Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163478

RESUMO

NOTCH signaling is implicated in the development of breast cancer tumors. DLK2, a non-canonical inhibitor of NOTCH signaling, was previously shown to be involved in skin and breast cancer. In this work, we studied whether different levels of DLK2 expression influenced the breast cancer characteristics of MDA-MB-231 cells. We found that DLK2 overexpression inhibited NOTCH activation in a dose-dependent manner. Moreover, depending on the level of inhibition of NOTCH1 activation generated by different levels of DLK2 expression, cell proliferation, cell cycle dynamics, cell apoptosis, cell migration, and tumor growth in vivo were affected in opposite directions. Low levels of DLK2 expression produced a slight inhibition of NOTCH1 activation, and enhanced MDA-MB-231 cell invasion in vitro and cell proliferation both in vitro and in vivo. In contrast, MDA-MB-231 cells expressing elevated levels of DLK2 showed a strong inhibition of NOTCH1 activation, decreased cell proliferation, increased cell apoptosis, and were unable to generate tumors in vivo. In addition, DLK2 expression levels also affected some members of other cell signaling pathways implicated in cancer, such as ERK1/2 MAPK, AKT, and rpS6 kinases. Our data support an important role of DLK2 as a protein that can finely regulate NOTCH signaling and affect the tumor properties and growth dynamics of MDA-MB-231 breast cancer cells.


Assuntos
Neoplasias da Mama , Peptídeos e Proteínas de Sinalização Intercelular , Receptores Notch , Transdução de Sinais , Animais , Feminino , Humanos , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Fosforilação , Receptores Notch/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
2.
FASEB J ; 31(8): 3484-3496, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28461338

RESUMO

NOTCH receptors participate in cancer cell proliferation and survival. Accumulated evidence indicates that, depending on the cellular context, these receptors can function as oncogenes or as tumor-suppressor genes. The epidermal growth factor-like protein delta-like homolog (DLK)1 acts as a NOTCH inhibitor and is involved in the regulation of normal and tumoral growth. In this work, we focused on the role of DLK1 in the control of breast cancer cell growth, a tumor type in which NOTCH receptors have been shown to play both opposite roles. We found that human DLK1 inhibits NOTCH signaling in MDA-MB-231 breast cancer cells. The proliferation rate and invasion capabilities of these cells depended on the level of NOTCH activation and signaling, as regulated by DLK1. High levels of DLK1 expression led to a significant decrease in NOTCH signaling, which was associated with a decrease in breast cancer cell proliferation and invasion. On the contrary, lower levels of NOTCH inhibition, caused by lower levels of DLK1 overexpression, led to enhanced in vitro MDA-MB-231 cell invasion, and to both in vitro and in vivo increased cell proliferation. The data presented in this work suggest that a fine regulation of NOTCH signaling plays an important role in the control of breast cancer cell proliferation and invasion.-Nueda, M.-L., Naranjo, A.-I., Baladrón V., Laborda, J. Different expression levels of DLK1 inversely modulate the oncogenic potential of human MDA-MB-231 breast cancer cells through inhibition of NOTCH1 signaling.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Receptor Notch1/metabolismo , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Invasividade Neoplásica , Receptor Notch1/genética
3.
Biochim Biophys Acta ; 1843(11): 2674-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25093684

RESUMO

NOTCH receptors regulate cell proliferation and survival in several types of cancer cells. Depending on the cellular context, NOTCH1 can function as an oncogene or as a tumor suppressor gene. DLK1 is also involved in the regulation of cell growth and cancer, but nothing is known about the role of DLK2 in these processes. Recently, the proteins DLK1 and DLK2 have been reported to interact with NOTCH1 and to inhibit NOTCH1 activation and signaling in different cell lines. In this work, we focused on the role of DLK proteins in the control of melanoma cell growth, where NOTCH1 is known to exert an oncogenic effect. We found that human DLK proteins inhibit NOTCH signaling in SK-MEL-2 metastatic melanoma cells. Moreover, the proliferation rate of these cells was dependent upon the level of NOTCH activation and signaling as regulated by DLK proteins. In particular, high levels of NOTCH inhibition resulted in a decrease, whereas lower levels of NOTCH inhibition led to an increase in melanoma cell proliferation rates, both in vitro and in vivo. Finally, our data revealed additive NOTCH-mediated effects of DLK proteins and the γ-secretase inhibitor DAPT on cell proliferation. The data presented in this work suggest that a fine regulation of NOTCH signaling plays an important role in the control of metastatic melanoma cell proliferation. Our results open the way to new research on the role of DLK proteins as potential therapeutic tools for the treatment of human melanoma.

4.
Biol Cell ; 106(8): 237-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24828459

RESUMO

BACKGROUND INFORMATION: Delta-like proteins 1 and 2 (DLK1, 2) are NOTCH receptor ligands containing epidermal growth factor-like repeats, which regulate NOTCH signalling. We investigated the role of DLK and the NOTCH pathway in the morphogenesis of the submandibular salivary glands (SMGs), using in vitro organotypic cultures. RESULTS: DLK1 and 2 were present in all stages of SMG morphogenesis, where DLK1 inhibited both NOTCH activity and SMG branching. The addition of NOTCH inhibitory agents, either soluble DLK1 (sDLK1) or N-[N-(3, 5-difluorophenacetyl-L-alanyl]-S-phenylglycine t-buthyl ester (DAPT), to the SMG culture medium did not affect the rate of cell proliferation, but induced a strong reduction in SMG branching, increased epithelial apoptosis, and impaired innervation of the epithelial end buds by local parasympathetic ganglion neurons. SMG innervation could be restored by the acetylcholine analog carbachol (CCh), which also rescued cytokeratin 5 (CK5(+))-expressing epithelial progenitor cells. Despite this, CCh failed to restore normal branching morphogenesis in the presence of either sDLK1 or DAPT. However, it improved recovery of branching morphogenesis in SMGs, once DLK1 or DAPT were removed from the medium. CONCLUSIONS: Our data suggest that DLK1 regulates SMGs morphogenesis and parasympathetic nerve fibre outgrowth through inhibition of NOTCH signalling.


Assuntos
Gânglios Parassimpáticos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Receptores Notch/fisiologia , Glândula Submandibular , Animais , Proteínas de Ligação ao Cálcio , Dipeptídeos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Camundongos , Morfogênese/fisiologia , Técnicas de Cultura de Órgãos , Receptores Notch/antagonistas & inibidores , Transdução de Sinais , Células-Tronco/fisiologia , Glândula Submandibular/embriologia , Glândula Submandibular/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA