Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2200364119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733115

RESUMO

Voltage-sensing phosphatase (VSP) consists of a voltage sensor domain (VSD) and a cytoplasmic catalytic region (CCR), which is similar to phosphatase and tensin homolog (PTEN). How the VSD regulates the innate enzyme component of VSP remains unclear. Here, we took a combined approach that entailed the use of electrophysiology, fluorometry, and structural modeling to study the electrochemical coupling in Ciona intestinalis VSP. We found that two hydrophobic residues at the lowest part of S4 play an essential role in the later transition of VSD-CCR coupling. Voltage clamp fluorometry and disulfide bond locking indicated that S4 and its neighboring linker move as one helix (S4-linker helix) and approach the hydrophobic spine in the CCR, a structure located near the cell membrane and also conserved in PTEN. We propose that the hydrophobic spine operates as a hub for translating an electrical signal into a chemical one in VSP.


Assuntos
Domínio Catalítico , Potenciais da Membrana , Monoéster Fosfórico Hidrolases , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Sequência Conservada , Citoplasma/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Oócitos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Xenopus laevis
2.
Biochem J ; 479(11): 1127-1145, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35574701

RESUMO

Voltage-sensing proteins generally consist of voltage-sensor domains and pore-gate domains, forming the voltage-gated ion channels. However, there are several unconventional voltage-sensor proteins that lack pore-gate domains, conferring them unique voltage-sensing machinery. TMEM266, which is expressed in cerebellum granule cells, is one of the interesting voltage-sensing proteins that has a putative intracellular coiled-coil and a functionally unidentified cytosolic region instead of a pore-gate domain. Here, we approached the molecular function of TMEM266 by performing co-immunoprecipitation experiments. We unexpectedly discovered that TMEM266 proteins natively interact with the novel short form splice variants that only have voltage-sensor domains and putative cytosolic coiled-coil region in cerebellum. The crystal structure of coiled-coil region of TMEM266 suggested that these coiled-coil regions play significant roles in forming homodimers. In vitro expression experiments supported the idea that short form TMEM266 (sTMEM266) or full length TMEM266 (fTMEM266) form homodimers. We also performed proximity labeling mass spectrometry analysis for fTMEM266 and sTMEM266 using Neuro-2A, neuroblastoma cells, and fTMEM266 showed more interacting molecules than sTMEM266, suggesting that the C-terminal cytosolic region in fTMEM266 binds to various targets. Finally, TMEM266-deficient animals showed the moderate abnormality in open-field test. The present study provides clues about the novel voltage-sensing mechanism mediated by TMEM266.


Assuntos
Cerebelo , Canais Iônicos , Animais , Canais Iônicos/metabolismo , Camundongos
3.
Proc Natl Acad Sci U S A ; 114(39): E8264-E8273, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28900001

RESUMO

Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.


Assuntos
Proteínas do Olho/metabolismo , Regulação da Expressão Gênica , Complexo Repressor Polycomb 1/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Proteínas do Olho/genética , Camundongos , Camundongos Mutantes , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Proc Natl Acad Sci U S A ; 111(8): 3086-91, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516163

RESUMO

CpG DNA, a ligand for Toll-like receptor 9 (TLR9), has been one of the most promising immunotherapeutic agents. Although there are several types of potent humanized CpG oligodeoxynucleotide (ODN), developing "all-in-one" CpG ODNs activating both B cells and plasmacytoid dendritic cells forming a stable nanoparticle without aggregation has not been successful. In this study, we generated a novel nanoparticulate K CpG ODN (K3) wrapped by the nonagonistic Dectin-1 ligand schizophyllan (SPG), K3-SPG. In sharp contrast to K3 alone, K3-SPG stimulates human peripheral blood mononuclear cells to produce a large amount of both type I and type II IFN, targeting the same endosome where IFN-inducing D CpG ODN resides without losing its K-type activity. K3-SPG thus became a potent adjuvant for induction of both humoral and cellular immune responses, particularly CTL induction, to coadministered protein antigens without conjugation. Such potent adjuvant activity of K3-SPG is attributed to its nature of being a nanoparticle rather than targeting Dectin-1 by SPG, accumulating and activating antigen-bearing macrophages and dendritic cells in the draining lymph node. K3-SPG acting as an influenza vaccine adjuvant was demonstrated in vivo in both murine and nonhuman primate models. Taken together, K3-SPG may be useful for immunotherapeutic applications that require type I and type II IFN as well as CTL induction.


Assuntos
Ilhas de CpG/genética , Imunoterapia/métodos , Lectinas Tipo C/metabolismo , Nanopartículas/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Sizofirano/metabolismo , Receptor Toll-Like 9/agonistas , Adjuvantes Imunológicos/farmacologia , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Indutores de Interferon/farmacologia , Lectinas Tipo C/genética , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(22): 9055-9, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21518897

RESUMO

Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291-1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/fisiologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Ilhas de CpG , Cristalografia por Raios X/métodos , DNA/química , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Inativação Gênica , Camundongos , Conformação Molecular , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , S-Adenosilmetionina/química
6.
J Biol Chem ; 286(14): 12659-69, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21325282

RESUMO

In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells. Previous cell biological studies deduced that the first Ig-like domain of nectin and the second Ig-like domain are involved in trans-dimerization and cis-dimerization, respectively. However, to understand better the steps involved in nectin adhesion, the structural basis for the dimerization of nectin must be determined. In this study, we determined the first crystal structure of the entire extracellular region of nectin-1. In the crystal, nectin-1 formed a V-shaped homophilic dimer through the first Ig-like domain. Structure-based site-directed mutagenesis of the first Ig-like domain identified four essential residues that are involved in the homophilic dimerization. Upon mutating the four residues, nectin-1 significantly decreased cis-dimerization on the surface of cultured cells and abolished the homophilic and heterophilic adhesion activities. These results indicate that, in contrast with the previous notion, our structure represents a cis-dimer. Thus, our findings clearly reveal the structural basis for the cis-dimerization of nectins through the first Ig-like domains.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Agregação Celular/fisiologia , Junções Intercelulares/metabolismo , Animais , Moléculas de Adesão Celular/genética , Agregação Celular/genética , Linhagem Celular , Cromatografia em Gel , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Junções Intercelulares/genética , Camundongos , Microscopia de Fluorescência , Nectinas , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Ligação Proteica , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína , Ultracentrifugação
7.
Artigo em Inglês | MEDLINE | ID: mdl-21393840

RESUMO

The nectin family of Ca2+-independent immunoglobulin-like cell-cell adhesion molecules contains four members. Nectins, which have three Ig-like domains in their extracellular region, form cell-cell adherens junctions cooperatively with cadherins. The whole extracellular regions of nectin-1 (nectin-1-EC) and nectin-2 (nectin-2-EC) were expressed in Escherichia coli as inclusion bodies, solubilized in 8 M urea and then refolded by rapid dilution into refolding solution. The refolded proteins were subsequently purified by three chromatographic steps and crystallized using the hanging-drop vapour-diffusion method. The nectin-1-EC crystals belonged to space group P2(1)3 and the nectin-2-EC crystals belonged to space group P6(1)22 or P6(5)22.


Assuntos
Moléculas de Adesão Celular/química , Estrutura Terciária de Proteína , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/isolamento & purificação , Cristalização , Cristalografia por Raios X , Humanos , Corpos de Inclusão/química , Camundongos , Dados de Sequência Molecular , Nectinas , Dobramento de Proteína
8.
Nat Struct Mol Biol ; 28(10): 825-834, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625749

RESUMO

Xkr8-Basigin is a plasma membrane phospholipid scramblase activated by kinases or caspases. We combined cryo-EM and X-ray crystallography to investigate its structure at an overall resolution of 3.8 Å. Its membrane-spanning region carrying 22 charged amino acids adopts a cuboid-like structure stabilized by salt bridges between hydrophilic residues in transmembrane helices. Phosphatidylcholine binding was observed in a hydrophobic cleft on the surface exposed to the outer leaflet of the plasma membrane. Six charged residues placed from top to bottom inside the molecule were essential for scrambling phospholipids in inward and outward directions, apparently providing a pathway for their translocation. A tryptophan residue was present between the head group of phosphatidylcholine and the extracellular end of the path. Its mutation to alanine made the Xkr8-Basigin complex constitutively active, indicating that it plays a vital role in regulating its scramblase activity. The structure of Xkr8-Basigin provides insights into the molecular mechanisms underlying phospholipid scrambling.


Assuntos
Proteínas Reguladoras de Apoptose/química , Basigina/química , Membrana Celular/metabolismo , Proteínas de Membrana/química , Fosfolipídeos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Basigina/metabolismo , Microscopia Crioeletrônica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/química , Estrutura Terciária de Proteína , Triptofano/química
9.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 1): 88-96, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20057053

RESUMO

Two crystal modifications of a collagen model peptide, (Pro-Pro-Gly)(4)-Hyp-Hyp-Gly-(Pro-Pro-Gly)(4) [where Hyp is (4R,2S)-L-hydroxyproline], showed very similar unit-cell parameters and belonged to the same space group P2(1). Both crystals exhibited pseudo-merohedral twinning. The main difference was in their molecular-packing arrangements. One modification showed pseudo-hexagonal packing, while the other showed pseudo-tetragonal packing. Despite their different packing arrangements, no significant differences were observed in the hydration states of these modifications. The peptide in the pseudo-tetragonal crystal showed a cyclic fluctuation of helical twists with a period of 20 A, while that in the pseudo-hexagonal crystal did not. In these modifications, the puckering conformations of four of the 12 Hyp residues at the X position of the Hyp(X)-Hyp(Y)-Gly sequence were in the opposite conformations to the previous hypothesis that Hyp(X) residues involved in Hyp(X):Hyp(Y) and Hyp(X):Pro(Y) stacking pairs prefer up-puckering and down-puckering conformations, respectively. Detailed investigation of the molecular interactions between Hyp(X) and adjacent molecules revealed that these opposite conformations appeared because the puckering conformation, which follows the hypothesis, is subject to steric hindrance from the adjacent molecule.


Assuntos
Colágeno/química , Hidroxiprolina/química , Complexos Multiproteicos/química , Fragmentos de Peptídeos/química , Colágeno/metabolismo , Cristalização , Cristalografia por Raios X , Hidroxiprolina/metabolismo , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estereoisomerismo
10.
Structure ; 27(3): 439-448.e3, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30581044

RESUMO

Nearly all viruses of the Reoviridae family possess a multi-layered capsid consisting of an inner layer with icosahedral T = 1 symmetry and a second-outer layer (composed of 260 copies of a trimeric protein) exhibiting icosahedral T = 13 symmetry. Here we describe the construction and structural evaluation of an assembly intermediate of the Rice dwarf virus of the family Reoviridae stalled at the second capsid layer via targeted disruption of the trimer-trimer interaction interface in the second-layer capsid protein. Structural determination was performed by conventional and Zernike/Volta phase-contrast cryoelectron microscopy. The assembly defect second-layer capsid trimers bound exclusively to the outer surface of the innermost capsid layer at the icosahedral 3-fold axis. Furthermore, the second-layer assembly could not proceed without specific inter-trimer interactions. Our results suggest that the correct assembly pathway for second-layer capsid formation is highly controlled at the inter-layer and inter-trimer interactions.


Assuntos
Capsídeo/química , Reoviridae/fisiologia , Microscopia Crioeletrônica , Conformação Molecular , Montagem de Vírus
11.
Elife ; 72018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30484774

RESUMO

Voltage-sensing phosphatases (VSP) contain a voltage sensor domain (VSD) similar to that of voltage-gated ion channels but lack a pore-gate domain. A VSD in a VSP regulates the cytoplasmic catalytic region (CCR). However, the mechanisms by which the VSD couples to the CCR remain elusive. Here we report a membrane interface (named 'the hydrophobic spine'), which is essential for the coupling of the VSD and CCR. Our molecular dynamics simulations suggest that the hydrophobic spine of Ciona intestinalis VSP (Ci-VSP) provides a hinge-like motion for the CCR through the loose membrane association of the phosphatase domain. Electrophysiological experiments indicate that the voltage-dependent phosphatase activity of Ci-VSP depends on the hydrophobicity and presence of an aromatic ring in the hydrophobic spine. Analysis of conformational changes in the VSD and CCR suggests that the VSP has two states with distinct enzyme activities and that the second transition depends on the hydrophobic spine.


Assuntos
Citoplasma/genética , Ativação do Canal Iônico/genética , Membranas/química , Monoéster Fosfórico Hidrolases/química , Sequência de Aminoácidos/genética , Animais , Domínio Catalítico/genética , Ciona intestinalis/química , Citoplasma/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Monoéster Fosfórico Hidrolases/genética , Domínios Proteicos
12.
J Biochem ; 159(6): 599-607, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26826371

RESUMO

Sucrose phosphate synthase (SPS) catalyses the transfer of glycosyl group of uridine diphosphate glucose to fructose-6-phosphate to form sucrose-6-phosphate. Plant SPS plays a key role in photosynthetic carbon metabolisms, which activity is modulated by an allosteric activator glucose-6-phosphate (G6P). We produced recombinant sugarcane SPS using Escherichia coli and Sf9 insect cells to investigate its structure-function relationship. When expressed in E. coli, two forms of SPS with different sizes appeared; the larger was comparable in size with the authentic plant enzyme and the shorter was trimmed the N-terminal 20 kDa region off. In the insect cells, only enzyme with the authentic size was produced. We purified the trimmed SPS and the full size enzyme from insect cells and found their enzymatic properties differed significantly; the full size enzyme was activated allosterically by G6P, while the trimmed one showed a high activity even without G6P. We further introduced a series of N-terminal truncations up to 171 residue and found G6P-independent activity was enhanced by the truncation. These combined results indicated that the N-terminal region of sugarcane SPS is crucial for the allosteric regulation by G6P and may function like a suppressor domain for the enzyme activity.


Assuntos
Glucosiltransferases , Proteínas de Plantas , Saccharum/enzimologia , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/biossíntese , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/isolamento & purificação , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Saccharum/genética , Células Sf9 , Spodoptera
13.
Protein Sci ; 24(3): 376-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534554

RESUMO

Afadin, a scaffold protein localized in adherens junctions (AJs), links nectins to the actin cytoskeleton. Nectins are the major cell adhesion molecules of AJs. At the initial stage of cell-cell junction formation, the nectin-afadin interaction plays an indispensable role in AJ biogenesis via recruiting and tethering other components. The afadin PDZ domain (AFPDZ) is responsible for binding the cytoplasmic C-terminus of nectins. AFPDZ is a class II PDZ domain member, which prefers ligands containing a class II PDZ-binding motif, X-Φ-X-Φ (Φ, hydrophobic residues); both nectins and other physiological AFPDZ targets contain this class II motif. Here, we report the first crystal structure of the AFPDZ in complex with the nectin-3 C-terminal peptide containing the class II motif. We engineered the nectin-3 C-terminal peptide and AFPDZ to produce an AFPDZ-nectin-3 fusion protein and succeeded in obtaining crystals of this complex as a dimer. This novel dimer interface was created by forming an antiparallel ß sheet between ß2 strands. A major structural change compared with the known AFPDZ structures was observed in the α2 helix. We found an approximately 2.5 Å-wider ligand-binding groove, which allows the PDZ to accept bulky class II ligands. Apparently, the last three amino acids of the nectin-3 C-terminus were sufficient to bind AFPDZ, in which the two hydrophobic residues are important.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Proteínas dos Microfilamentos/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Camundongos , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Nectinas , Domínios PDZ , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
J Immunol Res ; 2015: 316364, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380317

RESUMO

Immunostimulatory CpG ODNs have been developed and utilized as TLR9-dependent innate immune activators and vaccine adjuvants. Four different types of immunostimulatory CpG ODNs (A/D, B/K, C, and P type) have been reported. A/D type ODNs are characterized by high IFN-α production but intrinsically form aggregates, hindering its good manufacturing practice grade preparation. In this study, we developed several D35-derived ODNs (a commonly used A/D type ODN), which were modified with the addition of a phosphorothioate polynucleotide tail (such as dAs40), and examined their physical properties, solubility in saline, immunostimulatory activity on human PBMCs, and vaccine adjuvant potential in monkeys. We found that two modified ODNs including D35-dAs40 and D35core-dAs40 were immunostimulatory, similar to original D35 in human PBMCs, resulting in high IFN-α secretion in a dose-dependent manner. Physical property analysis by dynamic light scattering revealed that both D35-dAs40 and D35core-dAs40 did not form aggregates in saline, which is currently impossible for the original D35. Furthermore, D35-dAs40 and D35core-dAs40 worked as better vaccine adjuvant in monkeys. These results suggested that D35-dAs40 and D35core-dAs40 are two promising prototypes of nonaggregating A/D type ODN with advantages of ease of drug preparation for clinical applications as vaccine adjuvants or IFN-α inducing immunomodifiers.


Assuntos
Adjuvantes Imunológicos , Oligodesoxirribonucleotídeos/imunologia , Poli A , Animais , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Relação Dose-Resposta Imunológica , Ácidos Graxos Monoinsaturados/química , Humanos , Vacinas contra Influenza/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Macaca fascicularis , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/química , Poli A/química , Compostos de Amônio Quaternário/química , Solubilidade
15.
Nat Struct Mol Biol ; 21(4): 352-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584463

RESUMO

The voltage-gated proton channel Hv1 (or VSOP) has a voltage-sensor domain (VSD) with dual roles of voltage sensing and proton permeation. Its gating is sensitive to pH and Zn(2+). Here we present a crystal structure of mouse Hv1 in the resting state at 3.45-Å resolution. The structure showed a 'closed umbrella' shape with a long helix consisting of the cytoplasmic coiled coil and the voltage-sensing helix, S4, and featured a wide inner-accessible vestibule. Two out of three arginines in S4 were located below the phenylalanine constituting the gating charge-transfer center. The extracellular region of each protomer coordinated a Zn(2+), thus suggesting that Zn(2+) stabilizes the resting state of Hv1 by competing for acidic residues that otherwise form salt bridges with voltage-sensing positive charges on S4. These findings provide a platform for understanding the general principles of voltage sensing and proton permeation.


Assuntos
Ativação do Canal Iônico , Canais Iônicos/química , Animais , Cristalografia por Raios X , Dimerização , Zíper de Leucina , Camundongos , Modelos Moleculares , Estrutura Terciária de Proteína , Prótons , Saccharomyces cerevisiae/genética , Termodinâmica , Raios X , Zinco/química
16.
Cell Host Microbe ; 12(5): 705-16, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23159059

RESUMO

Plasmodium parasites multiply within host erythrocytes, which contain high levels of iron, and parasite egress from these cells results in iron release and host anemia. Although Plasmodium requires host iron for replication, how host iron homeostasis and responses to these fluxes affect Plasmodium infection are incompletely understood. We determined that Lipocalin 2 (Lcn2), a host protein that sequesters iron, is abundantly secreted during human (P. vivax) and mouse (P. yoeliiNL) blood-stage malaria infections and is essential to control P. yoeliiNL parasitemia, anemia, and host survival. During infection, Lcn2 bolsters both host macrophage function and granulocyte recruitment and limits reticulocytosis, or the expansion of immature erythrocytes, which are the preferred target cell of P. yoeliiNL. Additionally, a chronic iron imbalance due to Lcn2 deficiency results in impaired adaptive immune responses against Plasmodium parasites. Thus, Lcn2 exerts antiparasitic effects by maintaining iron homeostasis and promoting innate and adaptive immune responses.


Assuntos
Proteínas de Fase Aguda/metabolismo , Ferro/metabolismo , Lipocalinas/metabolismo , Malária/imunologia , Malária/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Imunidade Adaptativa , Animais , Eritrócitos/parasitologia , Granulócitos/imunologia , Granulócitos/metabolismo , Granulócitos/parasitologia , Homeostase , Interações Hospedeiro-Parasita , Humanos , Imunidade Inata , Lipocalina-2 , Lipocalinas/sangue , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária/sangue , Malária/parasitologia , Malária Vivax/sangue , Malária Vivax/imunologia , Malária Vivax/metabolismo , Malária Vivax/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parasitemia/sangue , Parasitemia/imunologia , Parasitemia/parasitologia , Plasmodium vivax/imunologia , Plasmodium yoelii/imunologia , Proteínas Proto-Oncogênicas/sangue , Reticulocitose
17.
Biopolymers ; 86(3): 212-21, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17373653

RESUMO

Single crystal structures of host-guest peptides, (Pro-Hyp-Gly)(4)-Leu-Hyp-Gly-(Pro-Hyp-Gly)(5) (LOG1) and (Pro-Hyp-Gly)(4)- (Leu-Hyp-Gly)(2)-(Pro-Hyp-Gly)(4) (LOG2), have been determined at 1.6 A and 1.4 A resolution, respectively. In these crystals, the side chain conformations of the Leu residues were (+)gauche-trans. This conformational preference for the Leu side chain in the Leu-Hyp-Gly sequence was explained by stereochemical considerations together with statistical analysis of Protein Data Bank data. In the (+)gauche-trans conformation, the Leu side chain can protrude along the radial direction of the rod-like triple-helical molecule. One strong hydrophobic interaction of the Leu residue was observed between adjacent molecules in the LOG2 crystal. Because the Leu-Hyp-Gly sequence is one of the most frequently occurring triplets in Type I collagen, this strong hydrophobic interaction can be expected in a fibrillar structure of native collagen. All the Leu residues in the asymmetric unit of the LOG1 and LOG2 crystals had water molecules hydrogen bonded to their NH. These water molecules made three additional hydrogen bonds with the Hyp OH, the Gly O[double bond]C, and a water molecule in the second hydration shell, forming a tetrahedral coordination of hydrogen bonds, which allows a smaller mean-square displacement factor of this water oxygen atom than those of other water molecules. These hydrogen bonds stabilize the molecular and packing structures by forming one O[double bond]C(Gly)---W---OH(Hyp) intra-molecular linkage and two NH(Leu)---W---O[double bond]C(Gly) and NH(Leu)---W---OH(Hyp) inter-molecular linkages.


Assuntos
Leucina/química , Oligopeptídeos/química , Conformação Proteica , Sequência de Aminoácidos , Cristalografia por Raios X , Glicina/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hipoxantina/química , Modelos Químicos , Oligopeptídeos/síntese química , Oxigênio/química , Prolina/química , Estrutura Secundária de Proteína , Água/química
18.
Biopolymers ; 76(5): 367-77, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15386273

RESUMO

Triple-helical structures of (Pro-Hyp-Gly)n (n = 10, 11) at 100 K and room temperature (RT) were analyzed at 1.26 A resolution by using synchrotron radiation data. Totals of 49 and 42 water molecules per seven triplets in an asymmetric unit were found for the structures at 100 K and RT, respectively. These water molecules were classified into two groups, those in the first and second hydration shells. Although there was no significant difference between water molecules in the first shell at 100 K and those at RT, a significant difference between those in the second shell was observed. That is, the number of water molecules at RT decreased to one half and the average distance from peptide chains at RT became longer by about 0.3 A. On the other hand, of seven triplets in an asymmetric unit, three proline residues at the X position at 100 K clearly showed an up-puckering conformation, as opposed to the recent propensity-based hypothesis for the stabilization and destabilization of triple-helical structures by proline hydroxylation. This puckering was attributed to the interaction between proline rings and the surrounding water molecules at 100 K, which is much weaker at RT, as shown by longer average distance from peptide chains.


Assuntos
Colágeno/química , Hidroxiprolina/química , Oligopeptídeos/química , Colágeno/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Oligopeptídeos/metabolismo , Prolina/química , Conformação Proteica , Temperatura , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA