Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628446

RESUMO

The human body is endowed with an extraordinary ability to maintain different oxygen levels in various tissues and organs. The maintenance of physiological levels of oxygen is known as physoxia. The development of hypoxic conditions plays an important role in the biology of several pathologies, including cancer. In vitro studies using normal and neoplastic cells require that culture conditions be carried out under appropriate oxygen levels, either physoxic or hypoxic conditions. Such requirements are difficult to widely implement in laboratory practice, mainly due to the high costs of specialized equipment. In this work, we present and characterize a cost-effective method to culture cells under a range of oxygen levels using deoxidizing pouches. Our results show that physoxic and hypoxic levels using deoxidizing absorbers can be achieved either by implementing a gradual change in oxygen levels or by a regimen of acute depletion of oxygen. This approach triggers the activation of an epithelial-mesenchymal transition in cancer cells while stimulating the expression of HIF-1α. Culturing cancer cells with deoxidizing agent pouches revealed PI3K oncogenic pathway exacerbations compared to tumor cells growing under atmospheric levels of oxygen. Similar to the PI3K signaling disturbance, we also observed augmented oxidative stress and superoxide levels and increased cell cycle arrest. Most interestingly, the culture of cancer cells under hypoxia resulted in the accumulation of cancer stem cells in a time-dependent manner. Overall, we present an attractive, cost-effective method of culturing cells under appropriate physoxic or hypoxic conditions that is easily implementable in any wet laboratory equipped with cell culture tools.


Assuntos
Neoplasias , Oxigênio , Análise Custo-Benefício , Humanos , Hipóxia/metabolismo , Oxigênio/análise , Fosfatidilinositol 3-Quinases/metabolismo
2.
J Transl Med ; 18(1): 138, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216808

RESUMO

BACKGROUND: The skin is the largest organ of the human body. Upon injury, the skin triggers a sequence of signaling pathways that induce epithelial proliferation, migration, and ultimately, the re-establishment of the epithelial barrier. Our study explores the unknown epigenetic regulations of wound healing from a histone perspective. Posttranslational modifications of histones enhance chromatin accessibility and modify gene transcription. METHODS: Full-thickness wounds were made in the dorsal skin of twenty-four C57/B6 mice (C57BL/6J), followed by the use of ring-shaped silicone splints to prevent wound contraction. Tissue samples were collected at three time points (post-operatory day 1, 4, and 9), and processed for histology. Immunofluorescence was performed in all-time points using markers for histone H4 acetylation at lysines K5, K8, K12, and K16. RESULTS: We found well-defined histone modifications associated with the stages of healing. Most exciting, we showed that the epidermis located at a distance from the wound demonstrated changes in histone acetylation, particularly the deacetylation of histone H4K5, H4K8, and H4K16, and hyperacetylation of H4K12. The epidermis adjacent to the wound revealed the deacetylation of H4K5 and H4K8 and hyperacetylation of H4K12. Conversely, the migratory epithelium (epithelial tongue) displayed significant acetylation of H4K5 and H4K12. The H4K5 and H4K8 were decreased in the newly formed epidermis, which continued to display high levels of H4K12 and H4K16. CONCLUSIONS: This study profiles the changes in histone H4 acetylation in response to injury. In addition to the epigenetic changes found in the healing tissue, these changes also took place in tissues adjacent and distant to the wound. Furthermore, not only deacetylation but also hyperacetylation occurred during tissue repair and regeneration.


Assuntos
Epigênese Genética , Histonas , Acetilação , Animais , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Cicatrização/genética
3.
FASEB J ; 33(12): 13435-13449, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560860

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide and is characterized by a fast-paced growth. Like other solid tumors, the HNSCC growth rate results in the development of hypoxic regions identified by the expression of hypoxia-inducible factor 1α (HIF-1α). Interestingly, clinical data have shown that pharmacological induction of intratumoral hypoxia caused an unexpected rise in tumor metastasis and the accumulation of cancer stem cells (CSCs). However, little is known on the molecular circuitries involved in the presence of intratumoral hypoxia and the augmented population of CSCs. Here we explore the impact of hypoxia on the behavior of HNSCC and define that the controlling function of phosphatase and tensin homolog (PTEN) over HIF-1α expression and CSC accumulation are de-regulated during hypoxic events. Our findings indicate that hypoxic niches are poised to accumulate CSCs in a molecular process driven by the loss of PTEN activity. Furthermore, our data suggest that targeted therapies aiming at the PTEN/PI3K signaling may constitute an effective strategy to counteract the development of intratumoral hypoxia and the accumulation of CSCs.-Nascimento-Filho, C. H. V., Webber, L. P., Borgato, G. B., Goloni-Bertollo, E. M., Squarize, C. H., Castilho, R. M. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/fisiopatologia , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/metabolismo , Animais , Apoptose , Movimento Celular , Proliferação de Células , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019183

RESUMO

The circadian rhythm regulates the physiology and behavior of living organisms in a time-dependent manner. Clock genes have distinct roles including the control over gene expression mediated by the transcriptional activators CLOCK and BMAL1, and the suppression of gene expression mediated by the transcriptional repressors PER1/2 and CRY1/2. The balance between gene expression and repression is key to the maintenance of tissue homeostasis that is disrupted in the event of an injury. In the skin, a compromised epithelial barrier triggers a cascade of events that culminate in the mobilization of epithelial cells and stem cells. Recruited epithelial cells migrate towards the wound and reestablish the protective epithelial layer of the skin. Although we have recently demonstrated the involvement of BMAL and the PI3K signaling in wound healing, the role of the circadian clock genes in tissue repair remains poorly understood. Here, we sought to understand the role of BMAL1 on skin healing in response to injury. We found that genetic depletion of BMAL1 resulted in delayed healing of the skin as compared to wild-type control mice. Furthermore, we found that loss of Bmal1 was associated with the accumulation of Reactive Oxygen Species Modulator 1 (ROMO1), a protein responsible for inducing the production of intracellular reactive oxygen species (ROS). The slow healing was associated with ROS and superoxide dismutase (SOD) production, and pharmacological inhibition of the oxidative stress signaling (ROS/SOD) led to cellular proliferation, upregulation of Sirtuin 1 (SIRT1), and rescued the skin healing phenotype of Bmal1-/- mice. Overall, our study points to BMAL1 as a key player in tissue regeneration and as a critical regulator of ROMO1 and oxidative stress in the skin.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Antioxidantes/farmacologia , Epiderme/fisiologia , Regulação da Expressão Gênica , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Ritmo Circadiano , Epiderme/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
5.
Elife ; 122024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224289

RESUMO

Inter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by 'brute force' surveys of all genes within RNA-sequencing measures across tissues within a population. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource as gene-derived correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and network architectures across metabolic organs.


Assuntos
Pró-Proteína Convertase 9 , Transdução de Sinais , Humanos , Animais , Camundongos , Homeostase , Adiposidade
6.
Cell Oncol (Dordr) ; 42(2): 143-155, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30539410

RESUMO

PURPOSE: Emerging evidence indicates that bromodomains comprise a conserved class of epigenome readers involved in cancer development and inflammation. Bromodomains are associated with epigenetic modifications of gene transcription through interactions with lysine residues of histone tails. Particularly, the bromodomain and extra-terminal domain (BET) family member BRD4 has been found to be involved in the control over oncogenes, including c-MYC, and in the maintenance of downstream inflammatory processes. The objective of this study was to evaluate the effect of pharmacologically displacing BRD4 in mucoepidermoid carcinoma (MEC) cells. METHODS: We assessed the presence of BRD4 levels in a panel of human MEC tissue samples in conjunction with histological grading and clinical information. In vitro studies were carried out using human MEC-derived cell lines. The BET inhibitor iBET762 was administered to MEC cells to assess the impact of disrupted BRD4 signaling on colony forming capacities and cell cycle status. The activation of cellular senescence induced by iBET762 was determined by immunohistochemical staining for p16ink4. Flow cytometry was used to identify populations of cancer stem cells in MEC-derived cell lines. RESULTS: We found that primary human MECs and MEC-derived cell lines are endowed with high BRD4 expression levels compared to those in normal salivary glands. We also found that, by displacing BRD4 from chromatin using the BET inhibitor iBET762, MEC cells lose their colony forming capacities and undergo G1 cell cycle arrest and senescence. Finally, we found that targeted displacement of BRD4 from chromatin results in depletion of cancer stem cells from the overall MEC cell populations. CONCLUSIONS: Our findings indicate that bromodomain-mediated gene regulation constitutes an epigenetic mechanism that is deregulated in MEC cells and that the use of BET inhibitors may serve as a feasible therapeutic strategy to manage MECs.


Assuntos
Carcinoma Mucoepidermoide/tratamento farmacológico , Carcinoma Mucoepidermoide/genética , Epigênese Genética , Terapia de Alvo Molecular , Adolescente , Adulto , Idoso , Benzodiazepinas/farmacologia , Carcinoma Mucoepidermoide/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Histonas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Ensaio Tumoral de Célula-Tronco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA