Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Pathog ; 18(1): e1009718, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073381

RESUMO

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella's intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.


Assuntos
Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Salmonella/imunologia , Sistemas de Secreção Tipo III/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Virulência
2.
Infect Immun ; 90(7): e0066321, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678562

RESUMO

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes diseases ranging from gastroenteritis to systemic infection and sepsis. Salmonella uses type III secretion systems (T3SS) to inject effectors into host cells. While these effectors are necessary for bacterial invasion and intracellular survival, intracellular delivery of T3SS products also enables detection of translocated Salmonella ligands by cytosolic immune sensors. Some of these sensors form multimeric complexes called inflammasomes, which activate caspases that lead to interleukin-1 (IL-1) family cytokine release and pyroptosis. In particular, the Salmonella T3SS needle, inner rod, and flagellin proteins activate the NAIP/NLRC4 inflammasome in murine intestinal epithelial cells (IECs), which leads to restriction of bacterial replication and extrusion of infected IECs into the intestinal lumen, thereby preventing systemic dissemination of Salmonella. While these processes are quite well studied in mice, the role of the NAIP/NLRC4 inflammasome in human IECs remains unknown. Unexpectedly, we found the NAIP/NLRC4 inflammasome is dispensable for early inflammasome responses to Salmonella in both human IEC lines and enteroids. Additionally, NLRP3 and the adaptor protein ASC are not required for inflammasome activation in Caco-2 cells. Instead, we observed a necessity for caspase-4 and gasdermin D pore-forming activity in mediating inflammasome responses to Salmonella in Caco-2 cells. These findings suggest that unlike murine IECs, human IECs do not rely on NAIP/NLRC4 or NLRP3/ASC inflammasomes and instead primarily use caspase-4 to mediate inflammasome responses to Salmonella pathogenicity island 1 (SPI-1)-expressing Salmonella.


Assuntos
Inflamassomos , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Células CACO-2 , Proteínas de Ligação ao Cálcio , Caspases Iniciadoras , Células Epiteliais/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Inibidora de Apoptose Neuronal , Salmonella typhimurium , Sorogrupo
3.
Am J Public Health ; 112(12): 1721-1725, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302220

RESUMO

Vaccination remains key to reducing the risk of COVID-19-related severe illness and death. Because of historic medical exclusion and barriers to access, Black communities have had lower rates of COVID-19 vaccination than White communities. We describe the efforts of an academic medical institution to implement community-based COVID-19 vaccine clinics in medically underserved neighborhoods in Philadelphia, Pennsylvania. Over a 13-month period (April 2021-April 2022), the initiative delivered 9038 vaccine doses to community members, a majority of whom (57%) identified as Black. (Am J Public Health. 2022;112(12):1721-1725. https://doi.org/10.2105/AJPH.2022.307030).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Área Carente de Assistência Médica , COVID-19/epidemiologia , COVID-19/prevenção & controle , Philadelphia/epidemiologia , Vacinação
4.
Proc Natl Acad Sci U S A ; 114(50): 13242-13247, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29180436

RESUMO

Inflammasomes are cytosolic multiprotein complexes that initiate host defense against bacterial pathogens by activating caspase-1-dependent cytokine secretion and cell death. In mice, specific nucleotide-binding domain, leucine-rich repeat-containing family, apoptosis inhibitory proteins (NAIPs) activate the nucleotide-binding domain, leucine-rich repeat-containing family, CARD domain-containing protein 4 (NLRC4) inflammasome upon sensing components of the type III secretion system (T3SS) and flagellar apparatus. NAIP1 recognizes the T3SS needle protein, NAIP2 recognizes the T3SS inner rod protein, and NAIP5 and NAIP6 recognize flagellin. In contrast, humans encode a single functional NAIP, raising the question of whether human NAIP senses one or multiple bacterial ligands. Previous studies found that human NAIP detects both flagellin and the T3SS needle protein and suggested that the ability to detect both ligands was achieved by multiple isoforms encoded by the single human NAIP gene. Here, we show that human NAIP also senses the Salmonella Typhimurium T3SS inner rod protein PrgJ and that T3SS inner rod proteins from multiple bacterial species are also detected. Furthermore, we show that a single human NAIP isoform is capable of sensing the T3SS inner rod, needle, and flagellin. Our findings indicate that, in contrast to murine NAIPs, promiscuous recognition of multiple bacterial ligands is conferred by a single human NAIP.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Flagelina/metabolismo , Inflamassomos/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Animais , Células Cultivadas , Humanos , Imunidade Inata , Camundongos , Salmonella typhimurium/imunologia
5.
Proc Natl Acad Sci U S A ; 113(48): 13875-13880, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849579

RESUMO

Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICEAc) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICEAc-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.


Assuntos
Azorhizobium caulinodans/genética , Transferência Genética Horizontal/genética , Nodulação/genética , Simbiose/genética , Azorhizobium caulinodans/metabolismo , Fabaceae/genética , Fabaceae/microbiologia , Ilhas Genômicas/genética , Fixação de Nitrogênio/genética
6.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138024

RESUMO

Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H2O2 A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H2O2 RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H2O2 Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H2O2 Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H2O2 or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response.


Assuntos
Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Vibrio cholerae/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Camundongos , Viabilidade Microbiana/genética , Oxirredução , Espécies Reativas de Oxigênio , Deleção de Sequência , Fatores de Transcrição/química
7.
Mol Microbiol ; 102(5): 939-949, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27625149

RESUMO

Bacterial pathogens display versatile gene expression to adapt to changing surroundings. For example, Vibrio cholerae, the causative agent of cholera, utilizes distinct genetic programs to combat reactive oxygen species (ROS) in aquatic environments or during host infection. We previously reported that the virulence activator AphB in V. cholerae is involved in ROS resistance. Here by performing a genetic screen, we show that AphB represses ROS resistance gene ohrA, which is also repressed by another regulator, OhrR. Reduced forms of both AphB and OhrR directly bind to the ohrA promoter and repress its expression, whereas organic hydroperoxides such as cumene hydroperoxide (CHP) deactivate AphB and OhrR. OhrA is critical for V. cholerae adult mouse colonization but is dispensable when the mice are treated with antioxidants. Furthermore, similar to our previous finding that AphB and OhrR exhibit different reduction rates during the shift from oxic to anoxic environments, we found that AphB is also oxidized more slowly than OhrR under peroxide stress or exposure to oxygen. This differential regulation optimizes the expression of ohrA and contributes to V. cholerae's ability to survive in a variety of environmental niches that contain different levels of ROS.


Assuntos
Proteínas de Bactérias/metabolismo , Estresse Oxidativo/fisiologia , Compostos de Sulfidrila/metabolismo , Transativadores/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Oxirredução , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Transativadores/genética , Fatores de Transcrição/metabolismo , Vibrio cholerae/genética , Virulência
8.
J Bacteriol ; 197(9): 1573-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25691531

RESUMO

UNLABELLED: Many rhizobial species use complex N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) systems to monitor their population density and regulate their symbiotic interactions with their plant hosts. There are at least three LuxRI-type regulatory systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. In this study, we show that CinI, RaiI, and TraI are responsible for synthesizing all AHLs under the tested conditions. The activation of these AHL synthase genes requires their corresponding LuxR-type counterparts. We further demonstrate that CinRI is at the top of the regulatory cascade that activates RaiRI and TraRI QS systems. Moreover, we discovered that CinR possesses a specific affinity to bind cinI promoter in the absence of its cognate AHL ligand, thereby activating cinI transcription. Addition of AHLs leads to improved binding to the cinI promoter and enhanced cinI expression. Furthermore, we found that compared to the wild type, the cinR mutation displayed reduced nodule formation, and cinR, raiR, and traI mutants show significantly lower levels of nitrogen fixation activity than the wild type. These results suggest that the complex QS regulatory systems in R. etli play an important role in its symbiosis with legume hosts. IMPORTANCE: Many bacteria use quorum sensing (QS) to monitor their cell densities and coordinately regulate a number of physiological functions. Rhizobia often have diverse and complex LuxR/LuxI-type quorum sensing systems that may be involved in symbiosis and N2 fixation. In this study, we identified three LuxR/LuxI-type QS systems in Rhizobium etli CFN42: CinRI, RaiRI, and TraRI. We established a complex network of regulation between these QS components and found that these QS systems played important roles in symbiosis processes.


Assuntos
Acil-Butirolactonas/metabolismo , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Rhizobium etli/genética , Rhizobium etli/fisiologia , Fatores de Transcrição/metabolismo , DNA Bacteriano/metabolismo , Ligação Proteica
9.
AJPM Focus ; 1(1): 100017, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36942017

RESUMO

Introduction: The study objective was to evaluate a contact tracing training program and the role of contact tracing on volunteers' professional development. Methods: A COVID-19 contact tracing program was conducted at an urban academic medical center, in collaboration with the local health department, between March 2020 and May 2021. Contact tracers, most of whom were health professions students, completed pretraining and post-training surveys to assess knowledge and self-efficacy to conduct contact tracing, plus an 18-month follow-up survey regarding career impacts. Results: We observed statistically significant post-training increases in knowledge and self-efficacy to conduct contact tracing. Contact tracers described benefiting from training regarding cultural humility, empathy, and trauma-informed interviewing. They also expressed a deeper understanding of COVID-19 inequities and their structural causes and reported that the work was emotionally demanding. Conclusions: Key to pandemic preparedness is having a trained and supported workforce. This study showed how contact tracing training and field experience strengthened students' education in the health professions by sharpening interpersonal skills and structural competency and by generating insights regarding current gaps in both public health infrastructure and support for vulnerable populations.

10.
J Pers Med ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36556195

RESUMO

The Penn Medicine BioBank (PMBB) is an electronic health record (EHR)-linked biobank at the University of Pennsylvania (Penn Medicine). A large variety of health-related information, ranging from diagnosis codes to laboratory measurements, imaging data and lifestyle information, is integrated with genomic and biomarker data in the PMBB to facilitate discoveries and translational science. To date, 174,712 participants have been enrolled into the PMBB, including approximately 30% of participants of non-European ancestry, making it one of the most diverse medical biobanks. There is a median of seven years of longitudinal data in the EHR available on participants, who also consent to permission to recontact. Herein, we describe the operations and infrastructure of the PMBB, summarize the phenotypic architecture of the enrolled participants, and use body mass index (BMI) as a proof-of-concept quantitative phenotype for PheWAS, LabWAS, and GWAS. The major representation of African-American participants in the PMBB addresses the essential need to expand the diversity in genetic and translational research. There is a critical need for a "medical biobank consortium" to facilitate replication, increase power for rare phenotypes and variants, and promote harmonized collaboration to optimize the potential for biological discovery and precision medicine.

11.
JAMA Netw Open ; 5(9): e2232110, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36149656

RESUMO

Importance: The COVID-19 pandemic has claimed nearly 6 million lives globally as of February 2022. While pandemic control efforts, including contact tracing, have traditionally been the purview of state and local health departments, the COVID-19 pandemic outpaced health department capacity, necessitating actions by private health systems to investigate and control outbreaks, mitigate transmission, and support patients and communities. Objective: To investigate the process of designing and implementing a volunteer-staffed contact tracing program at a large academic health system from April 2020 to May 2021, including program structure, lessons learned through implementation, results of case investigation and contact tracing efforts, and reflections on how constrained resources may be best allocated in the current pandemic or future public health emergencies. Design, Setting, and Participants: This case series study was conducted among patients at the University of Pennsylvania Health System and in partnership with the Philadelphia Department of Public Health. Patients who tested positive for COVID-19 were contacted to counsel them regarding safe isolation practices, identify and support quarantine of their close contacts, and provide resources, such as food and medicine, needed during isolation or quarantine. Results: Of 5470 individuals who tested positive for COVID-19 and received calls from a volunteer, 2982 individuals (54.5%; median [range] age, 42 [18-97] years; 1628 [59.4%] women among 2741 cases with sex data) were interviewed; among 2683 cases with race data, there were 110 Asian individuals (3.9%), 1476 Black individuals (52.7%), and 817 White individuals (29.2%), and among 2667 cases with ethnicity data, there were 366 Hispanic individuals (13.1%) and 2301 individuals who were not Hispanic (82.6%). Most individuals lived in a household with 2 to 5 people (2125 of 2904 individuals with household data [71.6%]). Of 3222 unique contacts, 1780 close contacts (55.2%; median [range] age, 40 [18-97] years; 866 [55.3%] women among 1565 contacts with sex data) were interviewed; among 1523 contacts with race data, there were 69 Asian individuals (4.2%), 705 Black individuals (43.2%), and 573 White individuals (35.1%), and among 1514 contacts with ethnicity data, there were 202 Hispanic individuals (12.8%) and 1312 individuals (83.4%) who were not Hispanic. Most contacts lived in a household with 2 to 5 people (1123 of 1418 individuals with household data [79.2%]). Of 3324 cases and contacts who completed a questionnaire on unmet social needs, 907 (27.3%) experienced material hardships that would make it difficult for them to isolate or quarantine safely. Such hardship was significantly less common among White compared with Black participants (odds ratio, 0.20; 95% CI, 0.16-0.25). Conclusions and Relevance: These findings demonstrate the feasibility and challenges of implementing a case investigation and contact tracing program at an academic health system. In addition to successfully engaging most assigned COVID-19 cases and close contacts, contact tracers shared health information and material resources to support isolation and quarantine, thus filling local public health system gaps and supporting local pandemic control.


Assuntos
COVID-19 , Busca de Comunicante , Centros Médicos Acadêmicos , Adulto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante/métodos , Feminino , Humanos , Masculino , Pandemias/prevenção & controle , SARS-CoV-2 , Voluntários
12.
Nat Microbiol ; 5(1): 14-26, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31857733

RESUMO

Microbial pathogens possess an arsenal of strategies to invade their hosts, evade immune defences and promote infection. In particular, bacteria use virulence factors, such as secreted toxins and effector proteins, to manipulate host cellular processes and establish a replicative niche. Survival of eukaryotic organisms in the face of such challenge requires host mechanisms to detect and counteract these pathogen-specific virulence strategies. In this Review, we focus on effector-triggered immunity (ETI) in metazoan organisms as a mechanism for pathogen sensing and distinguishing pathogenic from non-pathogenic microorganisms. For the purposes of this Review, we adopt the concept of ETI formulated originally in the context of plant pathogens and their hosts, wherein specific host proteins 'guard' central cellular processes and trigger inflammatory responses following pathogen-driven disruption of these processes. While molecular mechanisms of ETI are well-described in plants, our understanding of functionally analogous mechanisms in metazoans is still emerging. In this Review, we present an overview of ETI in metazoans and discuss recently described cellular processes that are guarded by the host. Although all pathogens manipulate host pathways, we focus primarily on bacterial pathogens and highlight pathways of effector-triggered immune defence that sense disruption of core cellular processes by pathogens. Finally, we discuss recent developments in our understanding of how pathogens can evade ETI to overcome these host adaptations.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/imunologia , Fatores de Virulência/imunologia , Animais , Bactérias/imunologia , Bactérias/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Inflamassomos , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/imunologia , Virulência , Fatores de Virulência/metabolismo
13.
Nat Microbiol ; 5(3): 528, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32042131

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Science ; 371(6529): 646, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542139
15.
Cell Rep ; 14(2): 347-54, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26748713

RESUMO

Bacterial pathogens utilize gene expression versatility to adapt to environmental changes. Vibrio cholerae, the causative agent of cholera, encounters redox-potential changes when it transitions from oxygen-rich aquatic reservoirs to the oxygen-limiting human gastrointestinal tract. We previously showed that the virulence regulator AphB uses thiol-based switches to sense the anoxic host environment and transcriptionally activate the key virulence activator tcpP. Here, by performing a high-throughput transposon sequencing screen in vivo, we identified OhrR as another regulator that enables V. cholerae rapid anoxic adaptation. Like AphB, reduced OhrR binds to and regulates the tcpP promoter. OhrR and AphB displayed differential dynamics in response to redox-potential changes: OhrR is reduced more rapidly than AphB. Furthermore, OhrR thiol modification is required for rapid activation of virulence and successful colonization. This reveals a mechanism whereby bacterial pathogens employ posttranslational modifications of multiple transcription factors to sense and adapt to dynamic environmental changes.


Assuntos
Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Vibrio cholerae/metabolismo , Vibrio cholerae/virologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Transcrição Gênica , Ativação Transcricional , Virulência
16.
PLoS One ; 9(8): e106181, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25162599

RESUMO

The redox-regulated transcription factor SoxR is conserved in diverse bacteria, but emerging studies suggest that this protein plays distinct physiological roles in different bacteria. SoxR regulates a global oxidative stress response (involving > 100 genes) against exogenous redox-cycling drugs in Escherichia coli and related enterics. In the antibiotic producers Streptomyces coelicolor and Pseudomonas aeruginosa, however, SoxR regulates a smaller number of genes that encode membrane transporters and proteins with homology to antibiotic-tailoring enzymes. In both S. coelicolor and P. aeruginosa, SoxR-regulated genes are expressed in stationary phase during the production of endogenously-produced redox-active antibiotics. These observations suggest that SoxR evolved to sense endogenous secondary metabolites and activate machinery to process and transport them in antibiotic-producing bacteria. Previous bioinformatics analysis that searched the genome for SoxR-binding sites in putative promoters defined a five-gene SoxR regulon in S. coelicolor including an ABC transporter, two oxidoreductases, a monooxygenase and an epimerase/dehydratase. Since this in silico screen may have missed potential SoxR-targets, we conducted a whole genome transcriptome comparison of wild type S. coelicolor and a soxR-deficient mutant in stationary phase using RNA-Seq. Our analysis revealed a sixth SoxR-regulated gene in S. coelicolor that encodes a putative quinone oxidoreductase. Knowledge of the full complement of genes regulated by SoxR will facilitate studies to elucidate the function of this regulatory molecule in antibiotic producers.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Regulon , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Dados de Sequência Molecular , Oxirredução , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Alinhamento de Sequência , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA