RESUMO
BACKGROUND: Poor air quality can both trigger and aggravate lung and heart conditions, as well as affecting child development. It can even lead to neurological and mental health problems. However, the precise mechanisms by which air pollution affect human health are not well understood. AIMS: To promote interdisciplinary dialogue and better research based on a critical summary of evidence on air quality and health, with an emphasis on mental health, and to do so with a special focus on bioaerosols as a common but neglected air constituent. METHOD: A rapid narrative review and interdisciplinary expert consultation, as is recommended for a complex and rapidly changing field of research. RESULTS: The research methods used to assess exposures and outcomes vary across different fields of study, resulting in a disconnect in bioaerosol and health research. We make recommendations to enhance the evidence base by standardising measures of exposure to both particulate matter in general and bioaerosols specifically. We present methods for assessing mental health and ideal designs. There is less research on bioaerosols, and we provide specific ways of measuring exposure to these. We suggest research designs for investigating causal mechanisms as important intermediate steps before undertaking larger-scale and definitive studies. CONCLUSIONS: We propose methods for exposure and outcome measurement, as well as optimal research designs to inform the development of standards for undertaking and reporting research and for future policy.
RESUMO
BACKGROUND: Poor air quality is associated with poor health. Little attention is given to the complex array of environmental exposures and air pollutants that affect mental health during the life course. AIMS: We gather interdisciplinary expertise and knowledge across the air pollution and mental health fields. We seek to propose future research priorities and how to address them. METHOD: Through a rapid narrative review, we summarise the key scientific findings, knowledge gaps and methodological challenges. RESULTS: There is emerging evidence of associations between poor air quality, both indoors and outdoors, and poor mental health more generally, as well as specific mental disorders. Furthermore, pre-existing long-term conditions appear to deteriorate, requiring more healthcare. Evidence of critical periods for exposure among children and adolescents highlights the need for more longitudinal data as the basis of early preventive actions and policies. Particulate matter, including bioaerosols, are implicated, but form part of a complex exposome influenced by geography, deprivation, socioeconomic conditions and biological and individual vulnerabilities. Critical knowledge gaps need to be addressed to design interventions for mitigation and prevention, reflecting ever-changing sources of air pollution. The evidence base can inform and motivate multi-sector and interdisciplinary efforts of researchers, practitioners, policy makers, industry, community groups and campaigners to take informed action. CONCLUSIONS: There are knowledge gaps and a need for more research, for example, around bioaerosols exposure, indoor and outdoor pollution, urban design and impact on mental health over the life course.
RESUMO
Particle size is a significant factor in determining the dispersal and inhalation risk from bioaerosols. Green-waste composting is a significant source of bioaerosols (including pathogens), but little is known about the distribution of specific taxa across size fractions. To characterise size fractionated bioaerosol emissions from a compost facility, we used a Spectral Intensity Bioaerosol Sensor (SIBS) to quantify total bioaerosols and qPCR and metabarcoding to quantify microbial bioaerosols. Overall, sub-micron bioaerosols predominated, but molecular analysis showed that most (>75%) of the airborne microorganisms were associated with the larger size fractions (>3.3⯵m da). The microbial taxa varied significantly by size, with Bacilli dominating the larger, and Actinobacteria the smaller, size fractions. The human pathogen Aspergillus fumigatus dominated the intermediate size fractions (>50% da 1.1-4.7⯵m), indicating that it has the potential to disperse widely and once inhaled may penetrate deep into the respiratory system. The abundance of Actinobacteria (>60% at daâ¯<â¯2.1⯵m) and other sub-micron bioaerosols suggest that the main health effects from composting bioaerosols may come from allergenic respiratory sensitisation rather than directly via infection. These results emphasise the need to better understand the size distributions of bioaerosols across all taxa in order to model their dispersal and to inform risk assessments of human health related to composting facilities.