Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 76(3): 358-387, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697858

RESUMO

G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of ß-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, ß-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, ß-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the ß adrenoceptors and highlights the role of ß-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.


Assuntos
Transdução de Sinais , Humanos , Animais , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , beta-Arrestinas/metabolismo
2.
J Cell Physiol ; 239(5): e31212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308646

RESUMO

C-peptide, a byproduct of insulin synthesis believed to be biologically inert, is emerging as a multifunctional molecule. C-peptide serves an anti-inflammatory and anti-atherogenic role in type 1 diabetes mellitus (T1DM) and early T2DM. C-peptide protects endothelial cells by activating AMP-activated protein kinase α, thus suppressing the activity of NAD(P)H oxidase activity and reducing reactive oxygen species (ROS) generation. It also prevents apoptosis by regulating hyperglycemia-induced p53 upregulation and mitochondrial adaptor p66shc overactivation, as well as reducing caspase-3 activity and promoting expression of B-cell lymphoma-2. Additionally, C-peptide suppresses platelet-derived growth factor (PDGF)-beta receptor and p44/p42 mitogen-activated protein (MAP) kinase phosphorylation to inhibit vascular smooth muscle cells (VSMC) proliferation. It also diminishes leukocyte adhesion by virtue of its capacity to abolish nuclear factor kappa B (NF-kB) signaling, a major pro-inflammatory cascade. Consequently, it is envisaged that supplementation of C-peptide in T1DM might ameliorate or even prevent end-organ damage. In marked contrast, C-peptide increases monocyte recruitment and migration through phosphoinositide 3-kinase (PI-3 kinase)-mediated pathways, induces lipid accumulation via peroxisome proliferator-activated receptor γ upregulation, and stimulates VSMC proliferation and CD4+ lymphocyte migration through Src-kinase and PI-3K dependent pathways. Thus, it promotes atherosclerosis and microvascular damage in late T2DM. Indeed, C-peptide is now contemplated as a potential biomarker for insulin resistance in T2DM and linked to increased coronary artery disease risk. This shift in the understanding of the pathophysiology of diabetes from being a single hormone deficiency to a dual hormone disorder warrants a careful consideration of the role of C-peptide as a unique molecule with promising diagnostic, prognostic, and therapeutic applications.


Assuntos
Peptídeo C , Humanos , Peptídeo C/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Transdução de Sinais
3.
Int J Environ Health Res ; 34(2): 934-942, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916125

RESUMO

The incidence of female infertility is growing worldwide and its rate varies across countries. . The goal of this study is to assess the rate of female infertility and identify its associated factors among Lebanese women. This cross-sectional study was conducted between January to May 2019, enrolling a total of 952 females. The mean age was 34.8 ± 8 years and the rate of infertility was 34.3%. The multivariable analysis taking presence vs absence of infertility as the dependent variable, showed that patients with advanced age (aOR = 1.04), endometriosis (aOR = 2.175) and polycystic ovarian syndrome (aOR = 1.41) were significantly associated with higher rate of infertility. On the other hand, having a college level of education compared to a school level was significantly associated with lower odds of infertility (aOR = 0.511). The study highlights that the rate of infertility is high in Lebanon and is mainly associated with various sociodemographic factors and disease states. The findings raise the need to establish awareness campaigns that focus on early diagnosis of infertility, control the associated factors, and treat underlying comorbid conditions.


Assuntos
Infertilidade Feminina , Humanos , Feminino , Adulto , Infertilidade Feminina/epidemiologia , Infertilidade Feminina/etiologia , Infertilidade Feminina/terapia , Estudos Transversais , Incidência , Líbano/epidemiologia
4.
J Cell Physiol ; 238(6): 1148-1159, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37039489

RESUMO

Hypertension remains a major contributor to cardiovascular disease (CVD), a leading cause of global death. One of the major insults that drive increased blood pressure is inflammation. While it is the body's defensive response against some homeostatic imbalances, inflammation, when dysregulated, can be very deleterious. In this review, we highlight and discuss the causative relationship between inflammation and hypertension. We critically discuss how the interplay between inflammation and reactive oxygen species evokes endothelial damage and dysfunction, ultimately leading to narrowing and stiffness of blood vessels. This, along with phenotypic switching of the vascular smooth muscle cells and the abnormal increase in extracellular matrix deposition further exacerbates arterial stiffness and noncompliance. We also discuss how hyperhomocysteinemia and microRNA act as links between inflammation and hypertension. The premises we discuss suggest that the blue-sky scenarios for targeting the underlying mechanisms of hypertension necessitate further research.


Assuntos
Hipertensão , Inflamação , Humanos , Doenças Cardiovasculares , Endotélio Vascular , Matriz Extracelular , Hipertensão/metabolismo , Hipertensão/patologia , Inflamação/metabolismo , Inflamação/patologia , Espécies Reativas de Oxigênio/metabolismo
5.
J Cardiovasc Pharmacol ; 82(6): 470-479, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773889

RESUMO

ABSTRACT: Raynaud's phenomenon, which results from exaggerated cold-induced vasoconstriction, is more prevalent in females than males. We previously showed that estrogen increases the expression of alpha 2C-adrenoceptors (α 2C -AR), the sole mediator of cold-induced vasoconstriction. This effect of estrogen is reproduced by the cell-impermeable form of the hormone (E 2 :bovine serum albumin [BSA]), suggesting a role of the membrane estrogen receptor, G-protein-coupled estrogen receptor [GPER], in E 2 -induced α 2C -AR expression. We also previously reported that E 2 upregulates α 2C -AR in microvascular smooth muscle cells (VSMCs) via the cAMP/Epac/Rap/JNK/AP-1 pathway, and that E 2 :BSA elevates cAMP levels. We, therefore, hypothesized that E 2 uses GPER to upregulate α 2C -AR through the cAMP/Epac/JNK/AP-1 pathway. Our results show that G15, a selective GPER antagonist, attenuates the E 2 -induced increase in α 2C -AR transcription. G-1, a selective GPER agonist, induced α 2C -AR transcription, which was concomitant with elevated cAMP levels and JNK activation. Pretreatment with ESI09, an Epac inhibitor, abolished G-1-induced α 2C -AR upregulation and JNK activation. Moreover, pretreatment with SP600125, a JNK-specific inhibitor, but not H89, a PKA-specific inhibitor, abolished G-1-induced α 2C -AR upregulation. In addition, transient transfection of an Epac dominant negative mutant (Epac-DN) attenuated G-1-induced activation of the α 2C -AR promoter. This inhibitory effect of Epac-DN on the α 2C -AR promoter was overridden by the cotransfection of constitutively active JNK mutant. Furthermore, mutation of AP-1 site in the α 2C -AR promoter abrogated G1-induced expression. Collectively, these results indicate that GPER upregulates α 2C -AR through the cAMP/EPAC/JNK/AP-1 pathway. These findings unravel GPER as a new mediator of cold-induced vasoconstriction, and present it as a potential target for treating Raynaud's phenomenon in estrogen-replete females.


Assuntos
Transdução de Sinais , Humanos , AMP Cíclico/metabolismo , Estrogênios/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/farmacologia , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Adrenérgicos/metabolismo
6.
J Cell Physiol ; 236(9): 6282-6296, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33634486

RESUMO

Visfatin/nicotinamide phosphoribosyltransferase (NAMPT) is an adipokine expressed predominately in visceral fat tissues. High circulating levels of visfatin/NAMPT have been implicated in vascular remodeling, vascular inflammation, and atherosclerosis, all of which pose increased risks of cardiovascular events. In this context, increased levels of visfatin have been correlated with several upregulated pro-inflammatory mediators, such as IL-1, IL-1Ra, IL-6, IL-8, and TNF-α. Furthermore, visfatin is associated with leukocyte recruitment by endothelial cells and the production of adhesion molecules such as vascular cell adhesion molecule 1, intercellular cell adhesion molecule 1, and E-selectin, which are well known to mediate the progression of atherosclerosis. Moreover, diverse angiogenic factors have been found to mediate visfatin-induced angiogenesis. These include matrix metalloproteinases, vascular endothelial growth factor, monocyte chemoattractant protein 1, and fibroblast growth factor 2. This review aims to provide a comprehensive overview of the pro-inflammatory and angiogenic actions of visfatin, with a focus on the pertinent signaling pathways whose dysregulation contributes to the pathogenesis of atherosclerosis. Most importantly, some hypotheses regarding the integration of the aforementioned factors with the plausible atherogenic effect of visfatin are put forth for consideration in future studies. The pharmacotherapeutic potential of modulating visfatin's roles could be important in the management of cardiovascular disease, which continues to be the leading cause of death worldwide.


Assuntos
Adipocinas/metabolismo , Doenças Cardiovasculares/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Nicotinamida Fosforribosiltransferase/química , Transdução de Sinais , Remodelação Vascular
7.
Curr Hypertens Rep ; 22(3): 23, 2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32114652

RESUMO

PURPOSE OF REVIEW: Cardiovascular disease (CVD) is a non-subsiding disease that remains a leading cause of morbidity and mortality. CVD has been associated with endocrine disruptors, such as bisphenol A (BPA). This review critically summarizes existing findings on BPA and hypertension, with particular attention to genomic, non-genomic, molecular, and cellular mechanisms of action that render BPA as a cardiovascular estrogenic disruptor. RECENT FINDINGS: Owing to its similar estrogenic structure, BPA has been shown to affect various phenotypes that are regulated by the natural hormone, estrogen. Indeed, BPA has been shown to interact with estrogen receptors, located both in the cell membrane and in the cytoplasm/nucleus. Given that estrogen plays an important role in cardiovascular physiology, a contributing role for BPA in CVD would not be unexpected. Existing literature, though limited, established BPA as a source of disruption in cardiovascular health, particularly hypertension. However, effects of BPA are largely dependent on the dose, patient gender, tissue, and developmental stage of the exposed tissue/organ. Accumulating evidence argues for an adverse effect of BPA on blood pressure, with this effect being gender, dose, and time specific. Thus, comprehensive studies which take these factors and other parameters, like epigenetic factors, into account are warranted before a thorough understanding is at hand.


Assuntos
Compostos Benzidrílicos , Estrogênios , Hipertensão , Fenóis , Compostos Benzidrílicos/efeitos adversos , Estrogênios/fisiologia , Humanos , Hipertensão/induzido quimicamente , Fenóis/efeitos adversos
8.
Int J Mol Sci ; 21(14)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674299

RESUMO

Diabetic cardiomyopathy (DCM) is a constellation of symptoms consisting of ventricular dysfunction and cardiomyocyte disarray in the presence of diabetes. The exact cause of this type of cardiomyopathy is still unknown; however, several processes involving the mitochondria, such as lipid and glucose metabolism, reactive oxygen species (ROS) production, apoptosis, autophagy and mitochondrial biogenesis have been implicated. In addition, polyphenols have been shown to improve the progression of diabetes. In this review, we discuss some of the mechanisms by which polyphenols, particularly resveratrol, play a role in slowing the progression of DCM. The most important intermediates by which polyphenols exert their protective effect include Bcl-2, UCP2, SIRT-1, AMPK and JNK1. Bcl-2 acts to attenuate apoptosis, UCP2 decreases oxidative stress, SIRT-1 increases mitochondrial biogenesis and decreases oxidative stress, AMPK increases autophagy, and JNK1 decreases apoptosis and increases autophagy. Our dissection of these molecular players aims to provide potential therapeutic targets for the treatment of DCM.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Mitocôndrias/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos
9.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233489

RESUMO

Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.


Assuntos
Aterosclerose/metabolismo , Oclusão de Enxerto Vascular/metabolismo , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/genética , Angiotensina II/metabolismo , Antioxidantes/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/metabolismo , Fármacos Cardiovasculares/uso terapêutico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Oclusão de Enxerto Vascular/tratamento farmacológico , Oclusão de Enxerto Vascular/genética , Oclusão de Enxerto Vascular/patologia , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais
10.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708284

RESUMO

Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3',5'-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC's effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Contração Muscular/genética , Contração Muscular/fisiologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899451

RESUMO

Cancer continues to be a prime contributor to global mortality. Despite tremendous research efforts and major advances in cancer therapy, much remains to be learned about the underlying molecular mechanisms of this debilitating disease. A better understanding of the key signaling events driving the malignant phenotype of cancer cells may help identify new pharmaco-targets. Cyclic adenosine 3',5'-monophosphate (cAMP) modulates a plethora of biological processes, including those that are characteristic of malignant cells. Over the years, most cAMP-mediated actions were attributed to the activity of its effector protein kinase A (PKA). However, studies have revealed an important role for the exchange protein activated by cAMP (Epac) as another effector mediating the actions of cAMP. In cancer, Epac appears to have a dual role in regulating cellular processes that are essential for carcinogenesis. In addition, the development of Epac modulators offered new routes to further explore the role of this cAMP effector and its downstream pathways in cancer. In this review, the potentials of Epac as an attractive target in the fight against cancer are depicted. Additionally, the role of Epac in cancer progression, namely its effect on cancer cell proliferation, migration/metastasis, and apoptosis, with the possible interaction of reactive oxygen species (ROS) in these phenomena, is discussed with emphasis on the underlying mechanisms and pathways.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Neoplasias/metabolismo , Apoptose/fisiologia , Proliferação de Células/fisiologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Progressão da Doença , Humanos , Neoplasias/fisiopatologia , Transdução de Sinais/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo
12.
Int J Mol Sci ; 20(19)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547607

RESUMO

Like other organs, the heart undergoes normal adaptive remodeling, such as cardiac hypertrophy, with age. This remodeling, however, is intensified under stress and pathological conditions. Cardiac remodeling could be beneficial for a short period of time, to maintain a normal cardiac output in times of need; however, chronic cardiac hypertrophy may lead to heart failure and death. MicroRNAs (miRNAs) are known to have a role in the regulation of cardiac hypertrophy. This paper reviews recent advances in the field of miRNAs and cardiac hypertrophy, highlighting the latest findings for targeted genes and involved signaling pathways. By targeting pro-hypertrophic genes and signaling pathways, some of these miRNAs alleviate cardiac hypertrophy, while others enhance it. Therefore, miRNAs represent very promising potential pharmacotherapeutic targets for the management and treatment of cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/patologia , Insuficiência Cardíaca/patologia , Humanos
13.
Eur J Pharmacol ; 945: 175645, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36894048

RESUMO

In 1957, cyclic adenosine monophosphate (cAMP) was identified as the first secondary messenger, and the first signaling cascade discovered was the cAMP-protein kinase A (PKA) pathway. Since then, cAMP has received increasing attention given its multitude of actions. Not long ago, a new cAMP effector named exchange protein directly activated by cAMP (Epac) emerged as a critical mediator of cAMP's actions. Epac mediates a plethora of pathophysiologic processes and contributes to the pathogenesis of several diseases such as cancer, cardiovascular disease, diabetes, lung fibrosis, neurological disorders, and others. These findings strongly underscore the potential of Epac as a tractable therapeutic target. In this context, Epac modulators seem to possess unique characteristics and advantages and hold the promise of providing more efficacious treatments for a wide array of diseases. This paper provides an in-depth dissection and analysis of Epac structure, distribution, subcellular compartmentalization, and signaling mechanisms. We elaborate on how these characteristics can be utilized to design specific, efficient, and safe Epac agonists and antagonists that can be incorporated into future pharmacotherapeutics. In addition, we provide a detailed portfolio for specific Epac modulators highlighting their discovery, advantages, potential concerns, and utilization in the context of clinical disease entities.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Descoberta de Drogas
14.
Biomed Pharmacother ; 146: 112442, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35062053

RESUMO

Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Carcinógenos/química , Flavonoides/química , Humanos , Neoplasias/prevenção & controle , Transdução de Sinais
15.
Curr Med Chem ; 29(11): 1990-2010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34102966

RESUMO

Cannabis is the most widely trafficked and abused illicit drug due to its calming psychoactive properties. It has been increasingly recognized as having potential health benefits and relatively less adverse health effects as compared to other illicit drugs; however, growing evidence clearly indicates that cannabis is associated with considerable adverse cardiovascular events. Recent studies have linked cannabis use to myocardial infarction (MI); yet, very little is known about the underlying mechanisms. A MI is a cardiovascular disease characterized by a mismatch in the oxygen supply and demand of the heart, resulting in ischemia and subsequent necrosis of the myocardium. Since cannabis is increasingly being considered a risk factor for MI, there is a growing need for better appreciating its potential health benefits and consequences. Here, we discuss the cellular mechanisms of cannabis that lead to an increased risk of MI. We provide a thorough and critical analysis of cannabinoids' actions, which include modulation of adipocyte biology, regional fat distribution, and atherosclerosis, as well as precipitation of hemodynamic stressors relevant in the setting of a MI. By critically dissecting the modulation of signaling pathways in multiple cell types, this paper highlights the mechanisms through which cannabis may trigger life-threatening cardiovascular events. This then provides a framework for future pharmacological studies which can identify targets or develop drugs that modulate cannabis' effects on the cardiovascular system as well as other organ systems. Cannabis' impact on the autonomic outflow, vascular smooth muscle cells, myocardium, cortisol levels and other hemodynamic changes are also mechanistically reviewed.


Assuntos
Canabinoides , Cannabis , Doença da Artéria Coronariana , Infarto do Miocárdio , Analgésicos , Agonistas de Receptores de Canabinoides , Canabinoides/farmacologia , Humanos
16.
Front Oncol ; 12: 922196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847867

RESUMO

Breast cancer is the leading cause of cancer-related deaths among women. Among breast cancer types, triple negative breast cancer (TNBC) is the most aggressive, and is resistant to hormonal and chemotherapeutic treatments. As such, alternative approaches that may provide some benefit in fighting this debilitating pathology are critically needed; hence the utilization of herbal medicine. Origanum syriacum L., one of the most regularly consumed plants in the Mediterranean region, exhibits antiproliferative effect on several cancer cell lines. However, whether this herb modulates the malignant phenotype of TNBC remains poorly investigated. Here, we show that in MDA-MB-231, a TNBC cell line, Origanum syriacum L. aqueous extract (OSE) inhibited cellular viability, induced autophagy determined by the accumulation of lipidized LC3 II, and triggered apoptosis. We also show that OSE significantly promoted homotypic cell-cell adhesion while it decreased cellular migration, adhesion to fibronectin, and invasion of MDA-MB-231 cells. This was supported by decreased activity of focal adhesion kinase (FAK), reduced α2 integrin expression, and downregulation of secreted PgE2, MMP2 and MMP-9, in OSE-treated cells. Finally, we also show that OSE significantly inhibited angiogenesis and downregulated the level of nitric oxide (NO) production. Our findings demonstrate the ability of OSE to attenuate the malignant phenotype of the MDA-MB-231 cells, thus presenting Origanum syriacum L. as a promising potential source for therapeutic compounds for TNBC.

17.
Biochem Pharmacol ; 200: 115035, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35427570

RESUMO

Hypertension is a major risk factor for cardiovascular disease (CVD) as well as a major contributor to all-cause mortality and disability worldwide. The pathophysiology of hypertension is highly attributed to a dysfunctional endothelium and vascular remodeling. Despite the wide use of pharmacological therapies that modulate these pathways, a large percentage of patients continue to have uncontrolled hypertension, and the use of non-pharmacological interventions is increasingly investigated. Among these, caloric restriction (CR) appears to be a promising nutritional intervention for the management of hypertension. However, the mechanisms behind this effect are not yet fully understood, although an evolving view supports a significant impact of CR on vascular structure and function, specifically at the level of vascular endothelial cells, vascular smooth muscle cells along with their extracellular matrix (ECM). Accumulating evidence suggests that CR promotes endothelium-dependent vasodilation through activating eNOS and increasing nitric oxide (NO) levels through multiple cascades involving modulation of oxidative stress, autophagy, and inflammation. Indeed, CR diminishes phenotypic shift, and suppresses proliferation and migration of VSMCs via pathways involving NO and mTOR. By regulating transforming growth factor-ß and matrix metalloproteinases, CR appears to reduce ECM and collagen deposition in vascular walls. Here, we offer a detailed discussion of how these mechanisms contribute to CR's influence on reducing blood pressure. Such mechanisms could then provide a valuable foundation on which to base new therapeutic interventions for hypertension.


Assuntos
Restrição Calórica , Hipertensão , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Hipertensão/metabolismo , Óxido Nítrico/metabolismo , Vasodilatação
18.
Curr Pharm Des ; 27(18): 2099-2111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33480335

RESUMO

Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of death globally. Several lines of evidence are supportive of the contributory role of vascular inflammation in atherosclerosis. Diverse immune cell types, including monocytes/macrophages, T-cells and neutrophils, as well as specialized proresolving lipid mediators, have been successfully characterized as key players in vascular inflammation. The increased prevalence of atherosclerotic CVD in men in comparison to age-matched premenopausal women and the abolition of sex differences in prevalence during menopause strongly suggest a pivotal role of sex hormones in the development of CVD. Indeed, many animal and human studies conclusively implicate sex hormones as a crucial component in driving the immune response. This is further corroborated by the effective identification of sex hormone receptors in vascular endothelial cells, vascular smooth muscle cells and immune cells. Collectively, these findings suggest a cellular communication between sex hormones and vascular or immune cells underlying the vascular inflammation in atherosclerosis. The aim of this review is to provide an overview of vascular inflammation as a causal cue underlying atherosclerotic CVDs within the context of the modulatory effects of sex hormones. Moreover, the cellular and molecular signaling pathways underlying the sex hormones- immune system interactions as potential culprits for vascular inflammation are highlighted with detailed and critical discussion. Finally, the review concludes by speculations on the potential sex-related efficacy of currently available immunotherapies in mitigating vascular inflammation. Conceivably, a deeper understanding of the immunoregulatory influence of sex hormones on vascular inflammation-mediated atherosclerosis permits sex-based management of atherosclerosis-related CVDs.


Assuntos
Aterosclerose , Células Endoteliais , Aterosclerose/tratamento farmacológico , Feminino , Hormônios Esteroides Gonadais , Humanos , Inflamação/tratamento farmacológico , Masculino , Caracteres Sexuais , Transdução de Sinais
19.
Vascul Pharmacol ; 131: 106690, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32407896

RESUMO

Cutaneous cold-induced vasoconstriction is a normal physiological reaction mediated by alpha 2C-adrenergic receptors (α2C-ARs) expressed in vascular smooth muscle cells (VSMCs). When this reaction is exaggerated, Raynaud's phenomenon (RP) ensues. RP is more prevalent in females compared to age-matched men. We previously established that 17-ß estradiol (estrogen) upregulates α2C-ARs in human VSMCs via a cAMP/Epac/Rap pathway. We also showed that cAMP acts through JNK to increase α2C-AR expression. However, whether estrogen employs JNK to regulate α2C-AR is not investigated. Knowing that the α2C-AR promoter harbors an activator protein-1 (AP-1) binding site that can be potentially activated by JNK, we hypothesized that estrogen regulates α2C-AR expression through an Epac/JNK/AP-1 pathway. Our results show that estrogen (10-10 M) activated JNK in human VSMCs extracted from cutaneous arterioles. Pretreatment with ESI09 (10 µM; an Epac inhibitor), abolished estrogen-induced JNK activation. In addition, pre-treatment with SP600125 (3 µM; a JNK specific inhibitor) abolished estrogen-induced expression of α2C-AR. Importantly, estrogen-induced activation of α2C-AR promoter was attenuated with SP600125. Moreover, transient transfection of VSMCs with an Epac dominant negative mutant (Epac-DN) abolished estrogen-induced activation of α2C-AR promoter. However, co-transfection of constitutively active JNK mutant overrode the inhibitory effect of Epac-DN on α2C-AR promoter. Moreover, estrogen caused a concentration-dependent increase in the activity of AP-1-driven reporter construct. Mutation of AP-1 site in the α2C-AR promoter abolished its activation by estrogen. This in vitro estrogen-increased α2C-AR expression was mirrored by an increase in the ex vivo functional responsiveness of arterioles. Indeed, estrogen potentiated α2C-AR-mediated cold-induced vasoconstriction, which was abolished by SP600125. Collectively, these results indicate that estrogen upregulates α2C-AR expression via an EPAC-mediated JNK/AP-1- dependent mechanism. These results provide an insight into the mechanism by which exaggerated cold-induced vasoconstriction occurs in estrogen-replete females and identify Epac and JNK as potential targets for the treatment of RP.


Assuntos
Temperatura Baixa , AMP Cíclico/metabolismo , Estradiol/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Cauda/irrigação sanguínea , Fator de Transcrição AP-1/metabolismo , Vasoconstrição/efeitos dos fármacos , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/enzimologia , Células Cultivadas , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Doença de Raynaud/tratamento farmacológico , Doença de Raynaud/enzimologia , Doença de Raynaud/fisiopatologia , Receptores Adrenérgicos alfa 2/genética , Transdução de Sinais , Fator de Transcrição AP-1/genética , Regulação para Cima
20.
Cells ; 9(11)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182523

RESUMO

Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is an adipocytokine with several intriguing properties. It was first identified as pre-B-cell colony-enhancing factor but turned out to possess enzymatic functions in nicotinamide adenine dinucleotide biosynthesis, with ubiquitous expression in skeletal muscles, liver, cardiomyocytes, and brain cells. Visfatin exists in an intracellular (iNAMPT) and extracellular (eNAMPT) form. Intracellularly, visfatin/iNAMPT plays a regulatory role in NAD+ biosynthesis and thereby affects many NAD-dependent proteins such as sirtuins, PARPs, MARTs and CD38/157. Extracellularly, visfatin is associated with many hormone-like signaling pathways and activates some intracellular signaling cascades. Importantly, eNAMPT has been associated with several metabolic disorders including obesity and type 1 and 2 diabetes. In this review, a brief overview about visfatin is presented with special emphasis on its relevance to metabolic diseases. Visfatin/NAMPT appears to be a unique molecule with clinical significance with a prospective promising diagnostic, prognostic, and therapeutic applications in many cardiovasculo-metabolic disorders.


Assuntos
Doenças Cardiovasculares/enzimologia , Doenças Metabólicas/enzimologia , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Ensaios Clínicos como Assunto , Humanos , Modelos Biológicos , NAD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA