Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Psychiatry Neurosci ; 42(3): 181-188, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27689884

RESUMO

BACKGROUND: Common variants in the TCF4 gene are among the most robustly supported genetic risk factors for schizophrenia. Rare TCF4 deletions and loss-of-function point mutations cause Pitt-Hopkins syndrome, a developmental disorder associated with severe intellectual disability. METHODS: To explore molecular and cellular mechanisms by which TCF4 perturbation could interfere with human cortical development, we experimentally reduced the endogenous expression of TCF4 in a neural progenitor cell line derived from the developing human cerebral cortex using RNA interference. Effects on genome-wide gene expression were assessed by microarray, followed by Gene Ontology and pathway analysis of differentially expressed genes. We tested for genetic association between the set of differentially expressed genes and schizophrenia using genome-wide association study data from the Psychiatric Genomics Consortium and competitive gene set analysis (MAGMA). Effects on cell proliferation were assessed using high content imaging. RESULTS: Genes that were differentially expressed following TCF4 knockdown were highly enriched for involvement in the cell cycle. There was a nonsignificant trend for genetic association between the differentially expressed gene set and schizophrenia. Consistent with the gene expression data, TCF4 knockdown was associated with reduced proliferation of cortical progenitor cells in vitro. LIMITATIONS: A detailed mechanistic explanation of how TCF4 knockdown alters human neural progenitor cell proliferation is not provided by this study. CONCLUSION: Our data indicate effects of TCF4 perturbation on human cortical progenitor cell proliferation, a process that could contribute to cognitive deficits in individuals with Pitt-Hopkins syndrome and risk for schizophrenia.


Assuntos
Proliferação de Células/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Transcrição 4/deficiência , Linhagem Celular , Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ontologia Genética , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Análise em Microsséries , Interferência de RNA , Esquizofrenia/genética , Fator de Transcrição 4/genética
2.
Am J Med Genet B Neuropsychiatr Genet ; 162B(1): 1-16, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23129290

RESUMO

Common SNPs in the transcription factor 4 (TCF4; ITF2, E2-2, SEF-2) gene, which encodes a basic Helix-Loop-Helix (bHLH) transcription factor, are associated with schizophrenia, conferring a small increase in risk. Other common SNPs in the gene are associated with the common eye disorder Fuch's corneal dystrophy, while rare, mostly de novo inactivating mutations cause Pitt-Hopkins syndrome. In this review, we present a systematic bioinformatics and literature review of the genomics, biological function and interactome of TCF4 in the context of schizophrenia. The TCF4 gene is present in all vertebrates, and although protein length varies, there is high conservation of primary sequence, including the DNA binding domain. Humans have a unique leucine-rich nuclear export signal. There are two main isoforms (A and B), as well as complex splicing generating many possible N-terminal amino acid sequences. TCF4 is highly expressed in the brain, where plays a role in neurodevelopment, interacting with class II bHLH transcription factors Math1, HASH1, and neuroD2. The Ca(2+) sensor protein calmodulin interacts with the DNA binding domain of TCF4, inhibiting transcriptional activation. It is also the target of microRNAs, including mir137, which is implicated in schizophrenia. The schizophrenia-associated SNPs are in linkage disequilibrium with common variants within putative DNA regulatory elements, suggesting that regulation of expression may underlie association with schizophrenia. Combined gene co-expression analyses and curated protein-protein interaction data provide a network involving TCF4 and other putative schizophrenia susceptibility genes. These findings suggest new opportunities for understanding the molecular basis of schizophrenia and other mental disorders.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Estudos de Associação Genética , Pleiotropia Genética , Predisposição Genética para Doença , Esquizofrenia/genética , Fatores de Transcrição/genética , Humanos , Mapas de Interação de Proteínas/genética , Fator de Transcrição 4
3.
Cell Mol Biol Lett ; 14(4): 692-702, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19562269

RESUMO

Genetic manipulation of the filamentous fungus Penicillium camemberti has been limited by a lack of suitable genetics tools for this fungus. In particular, there is no available homologous transformation system. In this study, the nitrate reductase (niaD) and orotidine-5'-monophosphate decarboxylase (pyrG) genes from Penicillium camemberti were characterized, and their suitability as metabolic molecular markers for transformation was evaluated. The genes were amplified using PCR-related techniques, and sequenced. The niaD gene is flanked by the nitrite reductase (niiA) gene in a divergent arrangement, being part of the putative nitrate assimilation cluster in P. camemberti. pyrG presents several polymorphisms compared with a previously sequenced pyrG gene from another P. camemberti strain, but almost all are silent mutations. Southern blot assays indicate that one copy of each gene is present in P. camemberti. Northern blot assays showed that the pyrG gene is expressed in minimal and rich media, and the niaD gene is expressed in nitrate, but not in reduced nitrogen sources. The functionality of the two genes as transformation markers was established by transforming A. nidulans pyrG- and niaD-deficient strains. Higher transformation efficiencies were obtained with a pyrG-containing plasmid. This is the first study yielding a molecular and functional characterization of P. camemberti genes that would be useful as molecular markers for transformation, opening the way for the future development of a non-antibiotic genetic transformation system for this fungus.


Assuntos
Nitrato Redutase/genética , Ornitina Descarboxilase/genética , Penicillium/genética , Transformação Genética , Marcadores Genéticos , Nitrato Redutase/metabolismo , Ornitina Descarboxilase/metabolismo , Penicillium/enzimologia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA