RESUMO
PURPOSE: Multichannel Transcranial Magnetic Stimulation (mTMS) arrays enable multiple sites to be stimulated simultaneously or sequentially under electronic control without moving the system's stimulation coils. Here, we build and characterize the performance of a novel modular 3-axis TMS coil that can be utilized as a unit element in large-scale multichannel TMS arrays. METHODS: We determined the basic physical characteristics of the 3-axis TMS coil x-, y- and z-elements using a custom 2-channel programmable stimulator prototype. We mapped the temporal rate-of-change of the induced magnetic field (dB/dt) on a 2D plane parallel to the coil surface (including an extended line for full spatial coverage) and compared those values with predictions from magnetic field simulations. Temperature measurements were carried out to assess the incorporated air-cooling method. We measured the mutual and self-inductances of the x/y/z-elements to assess coupling between them. Additionally, we measured and calculated the coupling between z-elements in the array configuration. Finally, we performed electric field simulations to evaluate the stimulation intensity and focality of the coil and compared the results to conventional TMS coils as well as demonstrated suitability of the 3-axis coil for a multichannel array configuration. RESULTS: The experimentally obtained dB/dt values validated the computational model of the 3-axis coil and therefore confirmed that both the coil and stimulator system are operating as intended. The air-cooling system was effective for brief high-frequency pulse trains and extended single- and paired-pulse TMS protocols. The electromagnetic simulations suggested that an array of the 3-axis coils would have comparable stimulation intensity to conventional TMS coils, therefore enabling clearly suprathreshold stimulation of the human brain. The recorded coil coupling between the x/y/z-elements was < 1% and the maximal coupling between z-elements in the array configuration was 1.8% and 3.4% for the measured and calculated values, respectively. CONCLUSION: We presented a 3-axis coil intended for multichannel TMS arrays. The electromagnetic measurements and simulations verified that the coil fabrication met the desired specifications and that the inductive coupling between the elements was negligible. The air-cooled 3-axis TMS coil appears suitable to be used as an element in multichannel TMS arrays.
Assuntos
Encéfalo/fisiologia , Campos Eletromagnéticos , Estimulação Magnética Transcraniana , Simulação por Computador , Cabeça/fisiologia , Frequência Cardíaca/fisiologia , Humanos , Estimulação Magnética Transcraniana/métodosRESUMO
PURPOSE: Multichannel transcranial magnetic stimulation (TMS)1 is an emerging technology that allows multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. A multichannel TMS/MRI head coil array for 3 Tesla is currently under development to mitigate challenges of concurrent TMS/fMRI as well as enable potential new applications. The influence of the multichannel TMS system on the MR image quality and safety must be carefully investigated. METHODS: A standard birdcage volume coil for 3 Tesla systems was simulated using a commercial numerical electromagnetic solver. Two setups, consisting of 1) a MR-compatible TMS coil, and 2) a 3-axis TMS coil array, were simulated to quantify changes in the transmit field B1+ and the SAR. A realistically shaped homogeneous head model was used in the computations. RESULTS: The stimulation coils produced enhancements and attenuations on the transmit field with effects greater than 5% up to 2.4 cm and 3.3 cm under the scalp for the MR-compatible TMS coil and 3-axis TMS coil array, respectively. The 10 g-SAR distribution did not change significantly in either of the cases; however, the nominal SAR maximum locus was shifted between existing hot spots. CONCLUSION: The simulated B1+ variations found near the TMS coils indicate the possibility of inducing sequence-dependent image artefacts predominatly limited to the vicinity of the coil(s). However, we conclude that neither the MR-compatible commercial TMS coil nor the 3-axis TMS coil array siginificantly elevate SAR in the head or neck beyond accepted safety limits.
Assuntos
Cabeça , Estimulação Magnética Transcraniana , Artefatos , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de FantasmasRESUMO
PURPOSE: To validate a novel setup for concurrent TMS/fMRI in the human motor cortex based on a dedicated, ultra-thin, multichannel receive MR coil positioned between scalp and TMS system providing greatly enhanced sensitivity compared to the standard birdcage coil setting. METHODS: A combined TMS/fMRI design was applied over the primary motor cortex based on 1Hz stimulation with stimulation levels of 80%, 90%, 100%, and 110% of the individual active motor threshold, respectively. Due to the use of a multichannel receive coil we were able to use multiband-accelerated (MB=2) EPI sequences for the acquisition of functional images. Data were analysed with SPM12 and BOLD-weighted signal intensity time courses were extracted in each subject from two local maxima (individual functional finger tapping localiser, fixed MNI coordinate of the hand knob) next to the hand area of the primary motor cortex (M1) and from the global maximum. RESULTS: We report excellent image quality without noticeable signal dropouts or image distortions. Parameter estimates in the three peak voxels showed monotonically ascending activation levels over increasing stimulation intensities. Across all subjects, mean BOLD signal changes for 80%, 90%, 100%, 110% of the individual active motor threshold were 0.43%, 0.63%, 1.01%, 2.01% next to the individual functional finger tapping maximum, 0.73%, 0.91%, 1.34%, 2.21% next to the MNI-defined hand knob and 0.88%, 1.09%, 1.65%, 2.77% for the global maximum, respectively. CONCLUSION: Our results show that the new setup for concurrent TMS/fMRI experiments using a dedicated MR coil array allows for high-sensitivity fMRI particularly at the site of stimulation. Contrary to the standard birdcage approach, the results also demonstrate that the new coil can be successfully used for multiband-accelerated EPI acquisition. The gain in flexibility due to the new coil can be easily combined with neuronavigation within the MR scanner to allow for accurate targeting in TMS/fMRI experiments.
Assuntos
Mapeamento Encefálico/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/instrumentação , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Magnética Transcraniana/métodosRESUMO
PURPOSE: To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. METHODS: The state-of-the-art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7-channel receive-only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state-of-the-art setup. RESULTS: MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g-factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. CONCLUSION: The novel coil array is safe, strongly improves signal-to-noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design.
Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Estimulação Magnética Transcraniana/instrumentação , Estimulação Magnética Transcraniana/métodos , Adulto , Simulação por Computador , Desenho de Equipamento , Feminino , Cabeça/anatomia & histologia , Humanos , Masculino , Imagens de FantasmasRESUMO
PURPOSE: Multichannel Transcranial Magnetic Stimulation (mTMS) [1] is a novel non-invasive brain stimulation technique allowing multiple sites to be stimulated simultaneously or sequentially under electronic control without movement of the coils. To enable simultaneous mTMS and MR imaging, we have designed and constructed a whole-head 28-channel receive-only RF coil at 3T. METHODS: A helmet-shaped structure was designed considering a specific layout for a mTMS system with holes for positioning the TMS units next to the scalp. Diameter of the TMS units defined the diameter of RF loops. The placement of the preamplifiers was designed to minimize possible interactions and to allow straightforward positioning of the mTMS units around the RF coil. Interactions between TMS-MRI were analyzed for the whole-head system extending the results presented in previous publications [2]. Both SNR- and g-factors maps were obtained to compare the imaging performance of the coil with commercial head coils. RESULTS: Sensitivity losses for the RF elements containing TMS units show a well-defined spatial pattern. Simulations indicate that the losses are predominantly caused by eddy currents on the coil wire windings. The average SNR performance of the TMSMR 28-channel coil is about 66% and 86% of the SNR of the 32/20-channel head coil respectively. The g-factor values of the TMSMR 28-channel coil are similar to the 32-channel coil and significantly better than the 20-channel coil. CONCLUSION: We present the TMSMR 28-channel coil, a head RF coil array to be integrated with a multichannel 3-axisTMS coil system, a novel tool that will enable causal mapping of human brain function.
Assuntos
Encéfalo , Estimulação Magnética Transcraniana , Humanos , Encéfalo/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética/métodos , Técnicas Estereotáxicas , Couro Cabeludo , Imagens de Fantasmas , Desenho de EquipamentoRESUMO
This article considers a new type of integrated multichannel Transcranial Magnetic Stimulator and Magnetic Resonance Imaging (TMS/MRI) system at 3T that is currently being designed. The system will enable unprecedented spatiotemporal control of the TMS-induced electric fields (Efields) with simultaneous rapid whole-head MRI acquisition to record the brain activity. A critical design question is how TMS coil elements interact with the transmit field (${\mathrm B}_{1}^{+}$) of the volume coil integrated in 3T MRI systems. In general, the TMS coils are not designed to have any resonant characteristics at the MRI frequency, they may potentially disturb the RF field due to the eddy currents induced. This is especially a concern with a multichannel TMS setup where the subject's head will be largely covered with the stimulation coils. Therefore, we investigated this problem by computational simulations with realistic TMS coil geometries and a birdcage transmit coil in conjunction with a human body model. We compared the ${\mathrm B}_{1}^{+}$ interaction effects of a commercially available MR-compatible TMS coil with our coil prototype. In both cases, the results show small local changes in the transmit field ${\mathrm B}_{1}^{+}$of the birdcage coil. Maximal Average Specific Absorption Rate (SAR) values over 1g tissue were found to be slightly lower when the TMS elements were present. We conclude that it should be feasible and safe to use the conventional body transmit coil even when an array of TMS coils is used.