Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(9): 1248-1254, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33888905

RESUMO

Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.

2.
J Chem Phys ; 157(22): 224702, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546798

RESUMO

The inhibition of the electrochemical oxygen reduction reaction (ORR) by zinc corrosion products plays an important role in the corrosion protection of galvanized steel. Hence, the electrocatalytic mechanism of the ORR on electrodeposited zinc hydroxide-based model corrosion products was investigated by in situ and operando attenuated total reflection infrared (ATR-IR) spectroscopy, supplemented by density functional theory (DFT) calculations. Model corrosion products containing flake-like crystalline Zn5(NO3)2(OH)8 were cathodically electrodeposited on germanium(100) electrodes from a zinc nitrate precursor electrolyte. Substantial amounts of the films are non-crystalline, and their surfaces predominantly consist of zinc oxide and hydroxide species, as evidenced by x-ray photoelectron spectroscopy. ATR-IR spectra show a peak at 1180 cm-1 during cathodic currents in O2-saturated NaClO4 solution. This peak is assigned to a surface-bound superoxide, the only ORR intermediate detected. Absorbance from the intermediate increases with increasing cathodic current, indicating an increase in surface concentration of superoxide intermediates at larger ORR current densities. The zinc hydroxide ages in the experiments, most likely by a transformation into zinc oxide, consistent with the observed decrease in absorbance over time of the OH bending mode of zinc hydroxide at 1380 cm-1. This aging is a time-dependent chemical process, implying that pure chemical aging is important in actual corrosion products as well. DFT calculations of adsorbed superoxide yield a Zn-O bond length similar to the bond length in Zn-O, thus enhancing superoxide interaction with undercoordinated tetrahedral Zn2+ sites on the surface. Thus, such active sites catalyze the first reduction step in the ORR.

3.
J Chem Phys ; 148(22): 222824, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907053

RESUMO

The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1-10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge-H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1-0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge-H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a "hydrophobic gap," developed with a thickness ≈1-3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of "free," non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm-1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.

4.
Angew Chem Int Ed Engl ; 57(39): 12855-12858, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30001472

RESUMO

The sluggish kinetics of oxygen reduction to water remains a significant limitation in the viability of proton-exchange-membrane fuel cells, yet details of the four-electron oxygen reduction reaction remain elusive. Herein, we apply in situ infrared spectroscopy to probe the surface chemistry of a commercial carbon-supported Pt nanoparticle catalyst during oxygen reduction. The IR spectra show potential-dependent appearance of adsorbed superoxide and hydroperoxide intermediates on Pt. This strongly supports an associative pathway for oxygen reduction. Analysis of the adsorbates alongside the catalytic current suggests that another pathway must also be in operation, consistent with a parallel dissociative pathway.

5.
J Am Chem Soc ; 139(17): 6030-6033, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28426219

RESUMO

Lead halide perovskites are materials with excellent optoelectronic and photovoltaic properties. However, some hurdles remain prior to commercialization of these materials, such as chemical stability, phase stability, sensitivity to moisture, and potential issues due to the toxicity of lead. Here, we report a new type of lead-free perovskite related compound, Cs2PdBr6. This compound is solution processable, exhibits long-lived photoluminescence, and an optical band gap of 1.6 eV. Density functional theory calculations indicate that this compound has dispersive electronic bands, with electron and hole effective masses of 0.53 and 0.85 me, respectively. In addition, Cs2PdBr6 is resistant to water, in contrast to lead-halide perovskites, indicating excellent prospects for long-term stability. These combined properties demonstrate that Cs2PdBr6 is a promising novel compound for optoelectronic applications.

6.
Analyst ; 142(2): 273-278, 2017 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-27900373

RESUMO

The fabrication of sub-nanoliter fluidic channels is demonstrated, with merely 10 nm depth on germanium, using conventional semiconductor device fabrication methods and a polymer assisted room-temperature sealing method. As a first application, an ultralow volume (650 pL) was studied by ATR-IR spectroscopy. A detection limit of ∼7.9 × 1010 molecules of human serum albumin (HSA) (∼0.2 mM) in D2O was achieved with highly specific ATR-IR spectroscopy.

7.
Anal Chem ; 88(13): 6666-71, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27269716

RESUMO

We describe a method for addressing redox enzymes adsorbed on a carbon electrode using synchrotron infrared microspectroscopy combined with protein film electrochemistry. Redox enzymes have high turnover frequencies, typically 10-1000 s(-1), and therefore, fast experimental triggers are needed in order to study subturnover kinetics and identify the involvement of transient species important to their catalytic mechanism. In an electrochemical experiment, this equates to the use of microelectrodes to lower the electrochemical cell constant and enable changes in potential to be applied very rapidly. We use a biological cofactor, flavin mononucleotide, to demonstrate the power of synchrotron infrared microspectroscopy relative to conventional infrared methods and show that vibrational spectra with good signal-to-noise ratios can be collected for adsorbed species with low surface coverages on microelectrodes with a geometric area of 25 × 25 µm(2). We then demonstrate the applicability of synchrotron infrared microspectroscopy to adsorbed proteins by reporting potential-induced changes in the flavin mononucleotide active site of a flavoenzyme. The method we describe will allow time-resolved spectroscopic studies of chemical and structural changes at redox sites within a variety of proteins under precise electrochemical control.


Assuntos
Técnicas Eletroquímicas , Mononucleotídeo de Flavina/química , Espectrofotometria Infravermelho , Biocatálise , Domínio Catalítico , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredução , Quinona Redutases/química , Quinona Redutases/metabolismo , Fuligem/química , Síncrotrons
8.
Phys Chem Chem Phys ; 18(36): 25100-25109, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27722623

RESUMO

In acidic solution, germanium surfaces undergo a transformation to hydrogen-terminated surfaces at sufficiently negative electrode potentials. Herein, we used in situ and operando attenuated total reflection infrared (ATR-IR) spectroscopy coupled to electrochemical experiments to study the details of this surface transformation on Ge(111) and Ge(100) in 0.1 M HClO4. The ATR-IR data gathered during the surface transformation are consistent with an interpretation according to which an intermediate state exists of a surface with mixed termination. In the mixed termination, both H and OH are bound to the surface, which showed a Ge-H stretching mode at ∼2025-2030 cm-1. At sufficiently negative potentials, the surfaces became fully hydrogen terminated. ATR-IR spectra can be understood by assigning the peak at ∼1977-1990 cm-1 to the stretching mode of GeH1 species on Ge(111), and the peak at ∼2000-2015 cm-1 to a stretching mode of GeH2 species on Ge(100). Measurements of the linear dichroism showed the GeH1 species to be oriented predominantly upright. The transition dipole moment of the GeH2 species was oriented parallel to the surface, as expected for an antisymmetric stretching mode.

9.
Phys Chem Chem Phys ; 15(16): 5771-81, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23361398

RESUMO

The electrochemical oxygen reduction reaction (ORR) on a n-Ge(100) surface in 0.1 M HClO4 was investigated in situ and operando using a combination of attenuated total reflection infrared (ATR-IR) spectroscopy and density functional (DFT) calculations. The vibrational modes of the detected intermediates were assigned based on DFT calculations of solvated model clusters such as Ge-bound superoxides and peroxides. ATR-IR shows the Ge-bound superoxide with a transition dipole moment oriented at (28 ± 10)° with respect to the surface normal. At slightly negative potentials, the surface-bound peroxide is identified by an OOH bending mode as a further intermediate, oriented at a similar angle. At strongly negative potentials, a surface-bound perchlorate is found. The findings indicate a multistep mechanism of the ORR. The reaction is furthermore coupled with the hydrogen evolution reaction (HER).

10.
Chem Commun (Camb) ; 52(96): 13901-13904, 2016 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-27841376

RESUMO

It is reported that metals on polyaniline (PANI) prepared by a simple method can exhibit excellent activity in the electro-reduction of CO2 to HCOOH or CH3OH due to tunable properties: N atoms on PANI capture CO2 through a strong Lewis acid-base interaction while Pd atoms, amongst Pd, Pt, and Cu studied, facilitate the fastest proton and electron transfers along PANI to the CO2 trapped sites to give rise to the best HCOOH yield in a highly cooperative manner.

11.
Nat Commun ; 7: 13303, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27830749

RESUMO

Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA