Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circ Res ; 123(4): 415-427, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29980569

RESUMO

RATIONALE: Inflammatory stress induced by exposure to bacterial lipopolysaccharide causes hematopoietic stem cell expansion in the bone marrow niche, generating a cellular immune response. As an integral component of the hematopoietic stem cell niche, the bone marrow vasculature regulates the production and release of blood leukocytes, which protect the host against infection but also fuel inflammatory diseases. OBJECTIVE: We aimed to develop imaging tools to explore vascular changes in the bone marrow niche during acute inflammation. METHODS AND RESULTS: Using the TLR (Toll-like receptor) ligand lipopolysaccharide as a prototypical danger signal, we applied multiparametric, multimodality and multiscale imaging to characterize how the bone marrow vasculature adapts when hematopoiesis boosts leukocyte supply. In response to lipopolysaccharide, ex vivo flow cytometry and histology showed vascular changes to the bone marrow niche. Specifically, proliferating endothelial cells gave rise to new vasculature in the bone marrow during hypoxic conditions. We studied these vascular changes with complementary intravital microscopy and positron emission tomography/magnetic resonance imaging. Fluorescence and positron emission tomography integrin αVß3 imaging signal increased during lipopolysaccharide-induced vascular remodeling. Vascular leakiness, quantified by albumin-based in vivo microscopy and magnetic resonance imaging, rose when neutrophils departed and hematopoietic stem and progenitor cells proliferated more vigorously. CONCLUSIONS: Introducing a tool set to image bone marrow either with cellular resolution or noninvasively within the entire skeleton, this work sheds light on angiogenic responses that accompany emergency hematopoiesis. Understanding and monitoring bone marrow vasculature may provide a key to unlock therapeutic targets regulating systemic inflammation.


Assuntos
Medula Óssea/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Nicho de Células-Tronco , Estresse Fisiológico , Animais , Medula Óssea/patologia , Células Progenitoras Endoteliais/citologia , Feminino , Inflamação/diagnóstico por imagem , Integrina alfaVbeta3/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Imagem Multimodal/métodos
2.
J Immunol ; 198(3): 1142-1155, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031335

RESUMO

CD4 T cells can differentiate into multiple effector subsets, including ThCTL that mediate MHC class II-restricted cytotoxicity. Although CD4 T cell-mediated cytotoxicity has been reported in multiple viral infections, their characteristics and the factors regulating their generation are unclear, in part due to a lack of a signature marker. We show in this article that, in mice, NKG2C/E identifies the ThCTL that develop in the lung during influenza A virus infection. ThCTL express the NKG2X/CD94 complex, in particular the NKG2C/E isoforms. NKG2C/E+ ThCTL are part of the lung CD4 effector population, and they mediate influenza A virus-specific cytotoxic activity. The phenotype of NKG2C/E+ ThCTL indicates they are highly activated effectors expressing high levels of binding to P-selectin, T-bet, and Blimp-1, and that more of them secrete IFN-γ and readily degranulate than non-ThCTL. ThCTL also express more cytotoxicity-associated genes including perforin and granzymes, and fewer genes associated with recirculation and memory. They are found only at the site of infection and not in other peripheral sites. These data suggest ThCTL are marked by the expression of NKG2C/E and represent a unique CD4 effector population specialized for cytotoxicity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citotoxicidade Imunológica , Vírus da Influenza A , Subfamília C de Receptores Semelhantes a Lectina de Células NK/análise , Infecções por Orthomyxoviridae/imunologia , Animais , Biomarcadores/análise , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/classificação , Interferon gama/biossíntese , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 1 de Ligação ao Domínio I Regulador Positivo , Fatores de Transcrição/análise
3.
Proc Natl Acad Sci U S A ; 112(7): E710-7, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646421

RESUMO

Cytosolic DNA-sensing pathways that signal via Stimulator of interferon genes (STING) mediate immunity to pathogens and also promote autoimmune pathology in DNaseII- and DNaseIII-deficient mice. In contrast, we report here that STING potently suppresses inflammation in a model of systemic lupus erythematosus (SLE). Lymphoid hypertrophy, autoantibody production, serum cytokine levels, and other indicators of immune activation were markedly increased in STING-deficient autoimmune-prone mice compared with STING-sufficient littermates. As a result, STING-deficient autoimmune-prone mice had significantly shorter lifespans than controls. Importantly, Toll-like receptor (TLR)-dependent systemic inflammation during 2,6,10,14-tetramethylpentadecane (TMPD)-mediated peritonitis was similarly aggravated in STING-deficient mice. Mechanistically, STING-deficient macrophages failed to express negative regulators of immune activation and thus were hyperresponsive to TLR ligands, producing abnormally high levels of proinflammatory cytokines. This hyperreactivity corresponds to dramatically elevated numbers of inflammatory macrophages and granulocytes in vivo. Collectively these findings reveal an unexpected negative regulatory role for STING, having important implications for STING-directed therapies.


Assuntos
Autoimunidade/fisiologia , Proteínas de Membrana/fisiologia , Animais , Autoanticorpos/biossíntese , Células Dendríticas/imunologia , Regulação da Expressão Gênica/fisiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/fisiologia , Interferons/fisiologia , Ativação Linfocitária , Proteínas de Membrana/genética , Camundongos
4.
J Immunol ; 192(12): 5881-93, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24835398

RESUMO

In response to acute virus infections, CD8(+) T cells differentiate to form a large population of short-lived effectors and a stable pool of long-lived memory cells. The characteristics of the CD8(+) T cell response are influenced by TCR affinity, Ag dose, and the inflammatory cytokine milieu dictated by the infection. To address the mechanism by which differences in TCR signal strength could regulate CD8(+) T cell differentiation, we investigated the transcription factor, IFN regulatory factor 4 (IRF4). We show that IRF4 is transiently upregulated to differing levels in murine CD8(+) T cells, based on the strength of TCR signaling. In turn, IRF4 controls the magnitude of the CD8(+) T cell response to acute virus infection in a dose-dependent manner. Modest differences in IRF4 expression dramatically influence the numbers of short-lived effector cells at the peak of the infection, but have no impact on the kinetics of the infection or on the rate of T cell contraction. Furthermore, the expression of key transcription factors such as T cell factor 1 and Eomesodermin are highly sensitive to graded levels of IRF4. In contrast, T-bet expression is less dependent on IRF4 levels and is influenced by the nature of the infection. These data indicate that IRF4 is a key component that translates the strength of TCR signaling into a graded response of virus-specific CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Vírus da Influenza A/imunologia , Fatores Reguladores de Interferon/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Infecções por Orthomyxoviridae/imunologia , Doença Aguda , Animais , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Vírus da Influenza A/genética , Fatores Reguladores de Interferon/genética , Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia
5.
Proc Natl Acad Sci U S A ; 109(41): E2794-802, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23011795

RESUMO

CD8(+) T-cell development in the thymus generates a predominant population of conventional naive cells, along with minor populations of "innate" T cells that resemble memory cells. Recent studies analyzing a variety of KO or knock-in mice have indicated that impairments in the T-cell receptor (TCR) signaling pathway produce increased numbers of innate CD8(+) T cells, characterized by their high expression of CD44, CD122, CXCR3, and the transcription factor, Eomesodermin (Eomes). One component of this altered development is a non-CD8(+) T cell-intrinsic role for IL-4. To determine whether reduced TCR signaling within the CD8(+) T cells might also contribute to this pathway, we investigated the role of the transcription factor, IFN regulatory factor 4 (IRF4). IRF4 is up-regulated following TCR stimulation in WT T cells; further, this up-regulation is impaired in T cells treated with a small-molecule inhibitor of the Tec family tyrosine kinase, IL-2 inducible T-cell kinase (ITK). In contrast to WT cells, activation of IRF4-deficient CD8(+) T cells leads to rapid and robust expression of Eomes, which is further enhanced by IL-4 stimulation. In addition, inhibition of ITK together with IL-4 increases Eomeso up-regulation. These data indicate that ITK signaling promotes IRF4 up-regulation following CD8(+) T-cell activation and that this signaling pathway normally suppresses Eomes expression, thereby regulating the differentiation pathway of CD8(+) T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Fatores Reguladores de Interferon/imunologia , Proteínas Tirosina Quinases/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Transdução de Sinais/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Feminino , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interleucina-4/farmacologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transdução de Sinais/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Timo/citologia , Timo/imunologia , Timo/metabolismo
6.
Nat Cardiovasc Res ; 1(1): 28-44, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35747128

RESUMO

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.

7.
Nat Biomed Eng ; 4(11): 1076-1089, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020600

RESUMO

Bone-marrow endothelial cells in the haematopoietic stem-cell niche form a network of blood vessels that regulates blood-cell traffic as well as the maintenance and function of haematopoietic stem and progenitor cells. Here, we report the design and in vivo performance of systemically injected lipid-polymer nanoparticles encapsulating small interfering RNA (siRNA), for the silencing of genes in bone-marrow endothelial cells. In mice, nanoparticles encapsulating siRNA sequences targeting the proteins stromal-derived factor 1 (Sdf1) or monocyte chemotactic protein 1 (Mcp1) enhanced (when silencing Sdf1) or inhibited (when silencing Mcp1) the release of stem and progenitor cells and of leukocytes from the bone marrow. In a mouse model of myocardial infarction, nanoparticle-mediated inhibition of cell release from the haematopoietic niche via Mcp1 silencing reduced leukocytes in the diseased heart, improved healing after infarction and attenuated heart failure. Nanoparticle-mediated RNA interference in the haematopoietic niche could be used to investigate haematopoietic processes for therapeutic applications in cancer, infection and cardiovascular disease.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Inativação Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Nicho de Células-Tronco/genética , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/prevenção & controle
8.
Immunohorizons ; 2(7): 251-261, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30264035

RESUMO

During acute lymphocytic choriomeningitis virus infection, pathogen-specific CD8+ cytotoxic T lymphocytes undergo clonal expansion leading to viral clearance. Following this, the majority of pathogen-specific CD8+ T cells undergo apoptosis, leaving a small number of memory CD8+ T cells that persist long-term and provide rapid protection upon secondary infection. Whereas much is known about the cytokines and transcription factors that regulate the early effector phase of the antiviral CD8+ T cell response, the factors regulating memory T cell homeostasis and survival are not well understood. In this article, we show that the Runt-related transcription factor Runx2 is important for long-term memory CD8+ T cell persistence following acute lymphocytic choriomeningitis virus-Armstrong infection in mice. Loss of Runx2 in T cells led to a reduction in KLRG1lo CD127hi memory precursor cell numbers with no effect on KLRG1hi CD127lo terminal effector cell populations. Runx2 expression levels were transcriptionally regulated by TCR signal strength via IRF4, TLR4/7, and selected cytokines. These data demonstrate a CD8+ T cell-intrinsic role for Runx2 in the long-term maintenance of antiviral memory CD8+ T cell populations.

9.
PLoS One ; 10(12): e0144826, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26714260

RESUMO

CD8+ T cell exhaustion commonly occurs in chronic infections and cancers. During T cell exhaustion there is a progressive and hierarchical loss of effector cytokine production, up-regulation of inhibitory co-stimulatory molecules, and eventual deletion of antigen specific cells by apoptosis. A key factor that regulates T cell exhaustion is persistent TCR stimulation. Loss of this interaction results in restoration of CD8+ T cell effector functions in previously exhausted CD8+ T cells. TCR stimulation is also important for the differentiation of Eomeshi anti-viral CD8+ effector T cells from T-bethi precursors, both of which are required for optimal viral control. However, the molecular mechanisms regulating the differentiation of these two cell subsets and the relative ratios required for viral clearance have not been described. We show that TCR signal strength regulates the relative expression of T-bet and Eomes in antigen-specific CD8+ T cells by modulating levels of IRF4. Reduced IRF4 expression results in skewing of this ratio in the favor of Eomes, leading to lower proportions and numbers of T-bet+ Eomes- precursors and poor control of LCMV-clone 13 infection. Manipulation of this ratio in the favor of T-bet restores the differentiation of T-bet+ Eomes- precursors and the protective balance of T-bet to Eomes required for efficient viral control. These data highlight a critical role for IRF4 in regulating protective anti-viral CD8+ T cell responses by ensuring a balanced ratio of T-bet to Eomes, leading to the ultimate control of this chronic viral infection.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Fatores Reguladores de Interferon/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Proteínas com Domínio T/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Cricetinae , Regulação da Expressão Gênica , Masculino , Camundongos , Dados de Sequência Molecular , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA