Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771066

RESUMO

OBJECTIVE: Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS: We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS: The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION: We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024.

2.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , Algoritmos
3.
Ann Neurol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703428

RESUMO

OBJECTIVE: Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS: The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS: Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION: We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.

4.
Magn Reson Med ; 90(4): 1271-1281, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37332203

RESUMO

PURPOSE: Frequency drift correction is an important postprocessing step in MRS that yields improvements in spectral quality and metabolite quantification. Although routinely applied in single-voxel MRS, drift correction is much more challenging in MRSI due to the presence of phase-encoding gradients. Thus, separately acquired navigator scans are normally required for drift estimation. In this work, we demonstrate the use of self-navigating rosette MRSI trajectories combined with time-domain spectral registration to enable retrospective frequency drift corrections without the need for separately acquired navigator echoes. METHODS: A rosette MRSI sequence was implemented to acquire data from the brains of 5 healthy volunteers. FIDs from the center of k-space ( k = 0 $$ k=0 $$ FIDs) were isolated from each shot of the rosette acquisition, and time-domain spectral registration was used to estimate the frequency offset of each k = 0 $$ k=0 $$ FID relative to a reference scan (the first k = 0 $$ k=0 $$ FID in the series). The estimated frequency offsets were then used to apply corrections throughout k $$ k $$ -space. Improvements in spectral quality were assessed before and after drift correction. RESULTS: Spectral registration resulted in significant improvements in signal-to-noise ratio (12.9%) and spectral linewidths (18.5%). Metabolite quantification was performed using LCModel, and the average Cramer-Rao lower bounds uncertainty estimates were reduced by 5.0% for all metabolites, following field drift correction. CONCLUSION: This study demonstrated the use of self-navigating rosette MRSI trajectories to retrospectively correct frequency drift errors in in vivo MRSI data. This correction yields meaningful improvements in spectral quality.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Razão Sinal-Ruído , Voluntários Saudáveis , Imageamento por Ressonância Magnética/métodos
5.
Neurobiol Dis ; 174: 105881, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202290

RESUMO

Fragile-X syndrome (FXS) and Neurofibromatosis of type 1 (NF-1) are two monogenic disorders sharing neurobehavioral symptoms and pathophysiological mechanisms. Namely, preclinical models of both conditions show overactivity of the mTOR signaling pathway as well as GABAergic alterations. However, despite its potential clinical relevance for these disorders, the GABAergic system has not been systematically studied in humans. In the present study, we used an extensive transcranial magnetic stimulation (TMS) assessment battery in combination with magnetic resonance spectroscopy (MRS) to provide a comprehensive picture of the main inhibitory neurotransmitter system in patients with FXS and NF1. Forty-three participants took part in the TMS session (15 FXS, 10 NF1, 18 controls) and 36 in the MRS session (11 FXS, 14 NF1, 11 controls). Results show that, in comparison to healthy control participants, individuals with FXS and NF1 display lower GABA concentration levels as measured with MRS. TMS result show that FXS patients present increased GABAB-mediated inhibition compared to controls and NF1 patients, and that GABAA-mediated intracortical inhibition was associated with increased excitability specifically in the FXS groups. In line with previous reports, correlational analyses between MRS and TMS measures did not show significant relationships between GABA-related metrics, but several TMS measures correlated with glutamate+glutamine (Glx) levels assessed with MRS. Overall, these results suggest a partial overlap in neurophysiological alterations involving the GABA system in NF1 and FXS, and support the hypothesis that MRS and TMS assess different aspects of the neurotransmitter systems.


Assuntos
Síndrome do Cromossomo X Frágil , Córtex Motor , Neurofibromatose 1 , Humanos , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Estimulação Magnética Transcraniana , Neurofibromatose 1/metabolismo
6.
Magn Reson Med ; 87(4): 1649-1660, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932240

RESUMO

PURPOSE: The spin-echo, full-intensity acquired localized (SPECIAL) sequence is a method for single-voxel, localized MRS in vivo with short TEs. In this study we modified the SPECIAL sequence to simultaneously record spectra from two volumes of interest. This new technique is called Hadamard-encoded dual-voxel SPECIAL (HD-SPECIAL). METHODS: The SPECIAL sequence consists of a spin echo localized to a column of tissue, preceded by a slice-selective inversion pulse in alternating scans to invert a section of the column. Full localization is achieved by subtraction of the inversion-on scans from the inversion-off scans. In HD-SPECIAL, the two-step inversion scheme is replaced by a four-step Hadamard-encoded scheme involving single-band and dual-band inversion pulses to select two regions of the spin-echo column. By appropriate Hadamard combination of the four acquired shots, spectra can be reconstructed from both desired regions. This approach does not rely on parallel imaging reconstruction. Using a 3T scanner, HD-SPECIAL localization is demonstrated both in phantoms and in the human brain in vivo, and the performance of HD-SPECIAL is assessed by comparing with the conventional SPECIAL sequence. RESULTS: Phantom and in vivo measurements show excellent agreement between measures from HD-SPECIAL and SPECIAL sequences. Relative to consecutive SPECIAL measurements from two regions, HD-SPECIAL reduces the total scan time 2-fold with minimal penalty in terms of spectral quality or SNR. CONCLUSION: The HD-SPECIAL sequence enables reliable acquisition of MR spectra simultaneously from two regions at 3 T, offering the potential to study interregional variations in metabolite concentrations.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas
7.
Magn Reson Med ; 87(2): 589-596, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34520079

RESUMO

PURPOSE: To investigate the editing-pulse flip angle (FA) dependence of editing efficiency and ultimately to maximize the edited signal of commonly edited MR spectroscopy (MRS) signals, such as gamma-aminobutyric acid (GABA) and lactate. METHODS: Density-matrix simulations were performed for a range of spin systems to find the editing-pulse FA for maximal editing efficiency. Simulations were confirmed by phantom experiments and in vivo measurements in 10 healthy participants using a 3T Philips scanner. Four MEGA-PRESS in vivo measurements targeting GABA+ and lactate were performed, comparing the conventional editing-pulse FA (FA = 180°) to the optimal one suggested by simulations (FA = 210°). RESULTS: Simulations and phantom experiments show that edited GABA and lactate signals are maximal at FA = 210°. Compared to conventional editing (FA = 180°), in vivo signals from GABA+ and lactate signals increase on average by 8.5% and 9.3%, respectively. CONCLUSION: Increasing the FA of editing-pulses in the MEGA-PRESS experiment from 180° to 210° increases the edited signals from GABA+ and lactate by about 9% in vivo.


Assuntos
Ácido Láctico , Ácido gama-Aminobutírico , Voluntários Saudáveis , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas
8.
Magn Reson Med ; 88(5): 1994-2004, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35775808

RESUMO

PURPOSE: The purpose of this study is to present a cloud-based spectral simulation tool "MRSCloud," which allows MRS users to simulate a vendor-specific and sequence-specific basis set online in a convenient and time-efficient manner. This tool can simulate basis sets for GE, Philips, and Siemens MR scanners, including conventional acquisitions and spectral editing schemes with PRESS and semi-LASER localization at 3 T. METHODS: The MRSCloud tool was built on the spectral simulation functionality in the FID-A software package. We added three extensions to accelerate computation (ie, one-dimensional projection method, coherence pathways filters, and precalculation of propagators). The RF waveforms were generated based on vendors' generic pulse shapes and timings. Simulations were compared within MRSCloud using different numbers of spatial resolution (21 × 21, 41 × 41, and 101 × 101). Simulated metabolite basis functions from MRSCloud were compared with those generated by the generic FID-A and MARSS, and a phantom-acquired basis set from LCModel. Intraclass correlation coefficients were calculated to measure the agreement between individual metabolite basis functions. Statistical analysis was performed using R in RStudio. RESULTS: Simulation time for a full PRESS basis set is approximately 11 min on the server. The interclass correlation coefficients ICCs were at least 0.98 between MRSCloud and FID-A and were at least 0.96 between MRSCloud and MARSS. The interclass correlation coefficients between simulated MRSCloud basis spectra and acquired LCModel basis spectra were lowest for glutamine at 0.68 and highest for N-acetylaspartate at 0.96. CONCLUSIONS: Substantial reductions in runtime have been achieved. High ICC values indicated that the accelerating features are running correctly and produce comparable and accurate basis sets.


Assuntos
Computação em Nuvem , Glutamina , Simulação por Computador , Espectroscopia de Ressonância Magnética/métodos , Imagens de Fantasmas
9.
NMR Biomed ; 35(7): e4702, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35078266

RESUMO

Edited MRS sequences are widely used for studying γ-aminobutyric acid (GABA) in the human brain. Several algorithms are available for modelling these data, deriving metabolite concentration estimates through peak fitting or a linear combination of basis spectra. The present study compares seven such algorithms, using data obtained in a large multisite study. GABA-edited (GABA+, TE = 68 ms MEGA-PRESS) data from 222 subjects at 20 sites were processed via a standardised pipeline, before modelling with FSL-MRS, Gannet, AMARES, QUEST, LCModel, Osprey and Tarquin, using standardised vendor-specific basis sets (for GE, Philips and Siemens) where appropriate. After referencing metabolite estimates (to water or creatine), systematic differences in scale were observed between datasets acquired on different vendors' hardware, presenting across algorithms. Scale differences across algorithms were also observed. Using the correlation between metabolite estimates and voxel tissue fraction as a benchmark, most algorithms were found to be similarly effective in detecting differences in GABA+. An interclass correlation across all algorithms showed single-rater consistency for GABA+ estimates of around 0.38, indicating moderate agreement. Upon inclusion of a basis set component explicitly modelling the macromolecule signal underlying the observed 3.0 ppm GABA peaks, single-rater consistency improved to 0.44. Correlation between discrete pairs of algorithms varied, and was concerningly weak in some cases. Our findings highlight the need for consensus on appropriate modelling parameters across different algorithms, and for detailed reporting of the parameters adopted in individual studies to ensure reproducibility and meaningful comparison of outcomes between different studies.


Assuntos
Algoritmos , Ácido gama-Aminobutírico , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes , Ácido gama-Aminobutírico/metabolismo
10.
Neuroimage ; 238: 118172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082116

RESUMO

Many magnetic resonance imaging (MRI) measures are being studied longitudinally to explore topics such as biomarker detection and clinical staging. A pertinent concern to longitudinal work is MRI scanner upgrades. When upgrades occur during the course of a longitudinal MRI neuroimaging investigation, there may be an impact on the compatibility of pre- and post-upgrade measures. Similarly, subject motion is another issue that may be detrimental to MRI work and embedding volumetric navigators (vNavs) within acquisition sequences has emerged as a technique that allows for prospective motion correction. Our research group recently underwent an upgrade from a Siemens MAGNETOM 3T Tim Trio system to a Siemens MAGNETOM 3T Prisma Fit system. The goals of the current work were to: 1) investigate the impact of this upgrade on commonly used structural imaging measures and proton magnetic resonance spectroscopy indices ("Prisma Upgrade protocol") and 2) examine structural imaging measures in a sequence with vNavs alongside a standard acquisition sequence ("vNav protocol"). While high reliability was observed for most of the investigated MRI outputs, suboptimal reliability was observed for certain indices. Across the scanner upgrade, increases in frontal, temporal, and cingulate cortical thickness (CT) and thalamus volume, along with decreases in parietal CT and amygdala, globus pallidus, hippocampus, and striatum volumes, were observed. No significant impact of the upgrade was found in 1H-MRS analyses. Further, CT estimates were found to be larger in MPRAGE acquisitions compared to vNav-MPRAGE acquisitions mainly within temporal areas, while the opposite was found mostly in parietal brain regions. The results from this work should be considered in longitudinal study designs and comparable prospective motion correction investigations are warranted in cases of marked head movement.


Assuntos
Espessura Cortical do Cérebro , Encéfalo/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Projetos de Pesquisa
11.
NMR Biomed ; 34(5): e4257, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32084297

RESUMO

Once an MRS dataset has been acquired, several important steps must be taken to obtain the desired metabolite concentration measures. First, the data must be preprocessed to prepare them for analysis. Next, the intensity of the metabolite signal(s) of interest must be estimated. Finally, the measured metabolite signal intensities must be converted into scaled concentration units employing a quantitative reference signal to allow meaningful interpretation. In this paper, we review these three main steps in the post-acquisition workflow of a single-voxel MRS experiment (preprocessing, analysis and quantification) and provide recommendations for best practices at each step.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Prova Pericial , Humanos , Substâncias Macromoleculares/análise , Processamento de Sinais Assistido por Computador
12.
NMR Biomed ; 34(5): e4484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33559967

RESUMO

The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.


Assuntos
Consenso , Espectroscopia de Ressonância Magnética , Relatório de Pesquisa/normas , Prova Pericial , Humanos , Software
13.
Int Psychogeriatr ; 33(1): 21-29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31578159

RESUMO

BACKGROUND: Diffusion tensor imaging (DTI), which is a technique for measuring the degree and direction of movement of water molecules in tissue, has been widely used to noninvasively assess white matter (WM) or gray matter (GM) microstructures in vivo. Mean diffusivity (MD), which is the average diffusion across all directions, has been considered as a marker of WM tract degeneration or extracellular space enlargement in GM. Recent lines of evidence suggest that cortical MD can better identify early-stage Alzheimer's disease than structural morphometric parameters in magnetic resonance imaging. However, knowledge of the relationships between cortical MD and other biological factors in the same cortical region, e.g. metabolites, is still limited. METHODS: Thirty-three healthy elderly individuals [aged 50-77 years (mean, 63.8±7.4 years); 11 males and 22 females] were enrolled. We estimated the associations between cortical MD and neurotransmitter levels. Specifically, we measured levels of γ-aminobutyric acid (GABA) and glutamate + glutamine (Glx), which are inhibitory and excitatory neurotransmitters, respectively, in medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) using MEGA-PRESS magnetic resonance spectroscopy, and we measured regional cortical MD using DTI. RESULTS: Cortical MD was significantly negatively associated with Glx levels in both mPFC and PCC. No significant association was observed between cortical MD and GABA levels in either GM region. CONCLUSION: Our findings suggest that degeneration of microstructural organization in GM, as determined on the basis of cortical MD measured by DTI, is accompanied by the decline of Glx metabolism within the same GM region.


Assuntos
Ácido Glutâmico , Glutamina , Substância Cinzenta , Substância Branca , Idoso , Imagem de Tensor de Difusão , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem
14.
Magn Reson Med ; 84(3): 1140-1151, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32003052

RESUMO

PURPOSE: In 2004, Boumezbeur et al proposed a simple yet powerful approach to detect the metabolism of 13 C-enriched substrates in the brain. Their approach consisted of dynamic 1 H-MRS, without a 13 C radiofrequency (RF) channel, and its successful application was demonstrated in monkeys. Since then, this promising method has yet to be applied rigorously in humans. In this study, we revisit the use of dynamic 1 H-MRS to measure the metabolism of 13 C-enriched substrates and demonstrate its application in the human brain. METHODS: In healthy participants, 1 H-MRS data were acquired dynamically before and following a bolus infusion of [1-13 C] glucose. Data were acquired on a 3T clinical MRI scanner using a short-TE SPECIAL sequence, with regions of interest in both anterior and posterior cingulate cortex. Using simulated basis spectra to model signal changes in both 12 C-bonded and 13 C-coupled resonances, the acquired spectra were fit in LCModel to obtain labeling time courses for glutmate and glutamine at both C4 and C3 positions. RESULTS: Presence of the 13 C label was clearly detectable, owing to the pronounced effect of heteronuclear (13 C-1 H) scalar coupling on the observed 1 H spectra. A decrease in signal from 12 C-bonded protons and an increase in signal from 13 C-coupled protons were observed. The fractional enrichment of Glu-C4, (Glu+Gln)-C4, and (Glu+Gln)-C3 at 30 minutes following infusion of [1-13 C] glucose was similar in both regions: 11% to 13%, 9% to 12% and 3% to 5%, respectively. CONCLUSION: These preliminary results confirm the feasibility of the use of dynamic 1 H-MRS to monitor 13 C labeling in the human brain, without a 13 C RF channel.


Assuntos
Encéfalo , Glutamina , Encéfalo/diagnóstico por imagem , Glucose , Ácido Glutâmico , Humanos , Prótons , Ondas de Rádio
15.
NMR Biomed ; 33(10): e4368, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32656879

RESUMO

An algorithm for retrospective correction of frequency and phase offsets in MRS data is presented. The algorithm, termed robust spectral registration (rSR), contains a set of subroutines designed to robustly align individual transients in a given dataset even in cases of significant frequency and phase offsets or unstable lipid contamination and residual water signals. Data acquired by complex multiplexed editing approaches with distinct subspectral profiles are also accurately aligned. Automated removal of unstable lipid contamination and residual water signals is applied first, when needed. Frequency and phase offsets are corrected in the time domain by aligning each transient to a weighted average reference in a statistically optimal order using nonlinear least-squares optimization. The alignment of subspectra in edited datasets is performed using an approach that specifically targets subtraction artifacts in the frequency domain. Weighted averaging is then used for signal averaging to down-weight poorer-quality transients. Algorithm performance was assessed on one simulated and 67 in vivo pediatric GABA-/GSH-edited HERMES datasets and compared with the performance of a multistep correction method previously developed for aligning HERMES data. The performance of the novel approach was quantitatively assessed by comparing the estimated frequency/phase offsets against the known values for the simulated dataset or by examining the presence of subtraction artifacts in the in vivo data. Spectral quality was improved following robust alignment, especially in cases of significant spectral distortion. rSR reduced more subtraction artifacts than the multistep method in 64% of the GABA difference spectra and 75% of the GSH difference spectra. rSR overcomes the major challenges of frequency and phase correction.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética , Criança , Bases de Dados como Assunto , Glutationa , Humanos , Lipídeos/análise , Processamento de Sinais Assistido por Computador , Água/química , Ácido gama-Aminobutírico
16.
NMR Biomed ; : e4347, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32808407

RESUMO

With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.

17.
Neuroimage ; 189: 425-431, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682536

RESUMO

Spectral editing allows direct measurement of low-concentration metabolites, such as GABA, glutathione (GSH) and lactate (Lac), relevant for understanding brain (patho)physiology. The most widely used spectral editing technique is MEGA-PRESS, which has been diversely implemented across research sites and vendors, resulting in variations in the final resolved edited signal. In this paper, we describe an effort to develop a new universal MEGA-PRESS sequence with HERMES functionality for the major MR vendor platforms with standardized RF pulse shapes, durations, amplitudes and timings. New RF pulses were generated for the universal sequence. Phantom experiments were conducted on Philips, Siemens, GE and Canon 3 T MRI scanners using 32-channel head coils. In vivo experiments were performed on the same six subjects on Philips and Siemens scanners, and on two additional subjects, one on GE and one on Canon scanners. On each platform, edited MRS experiments were conducted with the vendor-native and universal MEGA-PRESS sequences for GABA (TE = 68 ms) and Lac editing (TE = 140 ms). Additionally, HERMES for GABA and GSH was performed using the universal sequence at TE = 80 ms. The universal sequence improves inter-vendor similarity of GABA-edited and Lac-edited MEGA-PRESS spectra. The universal HERMES sequence yields both GABA- and GSH-edited spectra with negligible levels of crosstalk on all four platforms, and with strong agreement among vendors for both edited spectra. In vivo GABA+/Cr, Lac/Cr and GSH/Cr ratios showed relatively low variation between scanners using the universal sequence. In conclusion, phantom and in vivo experiments demonstrate successful implementation of the universal sequence across all four major vendors, allowing editing of several metabolites across a range of TEs.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Adulto , Feminino , Glutationa/metabolismo , Humanos , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Ácido gama-Aminobutírico/metabolismo
18.
NMR Biomed ; 32(3): e4058, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30663818

RESUMO

PURPOSE: In vivo magnetic resonance spectroscopy (MRS) is the only technique capable of non-invasively assessing metabolite concentrations in the brain. The lack of alternative methods makes validation of MRS measures challenging. The aim of this study is to assess the validity of MRS measures of human brain metabolite concentrations by comparing multiple MRS measures acquired using different MRS acquisition sequences. METHODS: Single-voxel SPECIAL and MEGA-PRESS MR spectra were acquired from both the dorsolateral prefrontal cortex and primary motor cortices in 15 healthy subjects. The SPECIAL spectrum, as well as both the edit-off and difference spectra of MEGA-PRESS were each analyzed in LCModel to obtain estimates of the absolute concentrations of total choline (TCh; glycerophosphocholine + phosphocholine), total creatine (TCr; creatine + phosphocreatine), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), NAA + NAAG, glutamate (Glu), glutamine (Gln), Glu + Gln, scyllo-inositol (Scyllo), myo-inositol (Ins), glutathione (GSH), γ-aminobutyric acid (GABA), lactate (Lac) and aspartate (Asp). Then, having obtained up to three independent measures of each metabolite per brain region per subject, correlations between the different measures were assessed. RESULTS: The degree of correlation between measures varied greatly across both the metabolites and sequences tested. As expected, metabolites with the most prominent spectral peaks (TCh, TCr, NAA + NAAG, Ins and Glu) had the most well-correlated measures between methods, while metabolites with less prominent spectral peaks (Lac, Gln, GABA, Asp, and NAAG) tended to have poorly-correlated measures between methods. Some metabolites with relatively less prominent spectral peaks (GSH, Scyllo) had fairly well-correlated measures between some methods. Combining metabolites improved the agreement between methods for measures of NAA + NAAG, but not for Glu + Gln. CONCLUSIONS: Given that the ground truth for in vivo MRS measures is never known, the method proposed here provides a promising means to assess the validity of in vivo MRS measures, which has not yet been explored widely.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética , Metaboloma , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Dipeptídeos/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Masculino , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
19.
J Magn Reson Imaging ; 49(1): 176-183, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659065

RESUMO

BACKGROUND: Cerebral glutathione (GSH), a marker of oxidative stress, has been quantified in neurodegenerative diseases and psychiatric disorders using proton magnetic resonance spectroscopy (MRS). Using a reproducible MRS technique is important, as it minimizes the impact of measurement technique variability on the study results and ensures that other studies can replicate the results. HYPOTHESIS: We hypothesized that very short echo time (TE) acquisitions would have comparable reproducibility to a long TE MEGA-PRESS acquisition, and that the short TE PRESS acquisition would have the poorest reproducibility. STUDY TYPE: Prospective. SUBJECTS/PHANTOMS: Ten healthy adults were scanned during two visits, and six metabolite phantoms containing varying concentrations of GSH and metabolites with resonances that overlap with GSH were scanned once. FIELD STRENGTH/SEQUENCE: At 3T we acquired MRS data using four different sequences: PRESS, SPECIAL, PR-STEAM, and MEGA-PRESS. ASSESSMENT: Reproducibility of each MRS sequence across two visits was assessed. STATISTICAL TESTS: Mean coefficients of variation (CV) and mean absolute difference (AD) were used to assess reproducibility. Linear regressions were performed on data collected from phantoms to examine the agreement between known and quantified levels of GSH. RESULTS: Of the four techniques, PR-STEAM had the lowest mean CV and AD (5.4% and 7.5%, respectively), implying excellent reproducibility, followed closely by PRESS (5.8% and 8.2%) and SPECIAL (8.0 and 10.1%), and finally by MEGA-PRESS (13.5% and 17.1%). Phantom data revealed excellent fits (R2 ≥ 0.98 or higher) using all methods. DATA CONCLUSION: Our data suggest that GSH can be quantified reproducibly without the use of spectral editing. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:176-183.


Assuntos
Encéfalo/diagnóstico por imagem , Glutationa/análise , Estresse Oxidativo , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Feminino , Voluntários Saudáveis , Humanos , Modelos Lineares , Masculino , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes , Adulto Jovem
20.
Acta Neuropsychiatr ; 31(1): 17-26, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30079857

RESUMO

OBJECTIVE: Prior studies suggest that a dysregulation of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) is involved in the pathophysiology of major depression. We aimed to elucidate changes in cortical GABA content in relation to depression and electroconvulsive therapy (ECT) using magnetic resonance spectroscopy (MRS). METHODS: In total, 11 patients with major depression or depressive episode of bipolar disorder (mean pre-ECT Ham-17 of 26) and 11 healthy subjects were recruited. GABA was quantified using short-TE MRS in prefrontal and occipital cortex. Other neurometabolites such as glutathione (GSH), N-acetylaspartate (NAA) and glutamate (Glu) were secondary outcome measures. RESULTS: No significant differences in GABA/Cr levels were observed between patients at baseline and healthy subjects in prefrontal cortex, t(20)=0.089, p=0.93 or occipital cortex t(21)=0.37, p=0.72. All patients improved on Ham-17 (mean post-ECT Ham-17 of 9). No significant difference was found in GABA, Glu, glutamine, choline or GSH between pre- and post-ECT values. However, we observed a significant decrease in NAA levels following ECT t(22)=3.89, p=0.0038, and a significant correlation between the NAA decline and the number of ECT sessions p=0.035. CONCLUSIONS: Our study does not support prior studies arguing for GABA as a key factor in the treatment effect of ECT on major depression. The reduction in NAA levels following ECT could be due to neuronal loss or a transient dysfunction in prefrontal cortex. As no long-term follow-up scan was performed, it is unknown whether NAA levels will normalise over time.


Assuntos
Ácido Aspártico/análogos & derivados , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia/métodos , Espectroscopia de Ressonância Magnética/métodos , Lobo Occipital/metabolismo , Córtex Pré-Frontal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Ácido Aspártico/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Occipital/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA