Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928335

RESUMO

Among the myriad of existing tyrosine kinase receptors, the TAM family-abbreviated from Tyro3, Axl, and Mer tyrosine kinase (MerTK)-has been extensively studied with an outstanding contribution from the team of Prof. Greg Lemke. MerTK activity is implicated in a wide variety of functions involving the elimination of apoptotic cells and has recently been linked to cancers, auto-immune diseases, and atherosclerosis/stroke. In the retina, MerTK is required for the circadian phagocytosis of oxidized photoreceptor outer segments by the retinal-pigment epithelial cells, a function crucial for the long-term maintenance of vision. We previously showed that MerTK ligands carry the opposite role in vitro, with Gas6 inhibiting the internalization of photoreceptor outer segments while Protein S acts conversely. Using site-directed mutagenesis and ligand-stimulated phagocytosis assays on transfected cells, we presently demonstrate, for the first time, that Gas6 and Protein S recognize different amino acids on MerTK Ig-like domains. In addition, MerTK's function in retinal-pigment epithelial cells is rhythmic and might thus rely on the respective stoichiometry of both ligands at different times of the day. Accordingly, we show that ligand bioavailability varies during the circadian cycle using RT-qPCR and immunoblots on retinal and retinal-pigment epithelial samples from control and beta5 integrin knockout mice where retinal phagocytosis is arrhythmic. Taken together, our results suggest that Gas6 and Protein S might both contribute to refine the acute regulation of MerTK in time for the daily phagocytic peak.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Fagocitose , Proteína S , c-Mer Tirosina Quinase , Animais , Camundongos , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ligantes , Proteína S/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia
2.
Expert Opin Drug Discov ; 12(10): 1011-1022, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28712329

RESUMO

INTRODUCTION: Demyelinating disorders, characterized by a chronic or episodic destruction of the myelin sheath, are a leading cause of neurological disability in young adults in western countries. Studying the complex mechanisms involved in axon myelination, demyelination and remyelination requires an experimental model preserving the neuronal networks and neuro-glial interactions. Organotypic cerebellar slice cultures appear to be the best alternative to in vivo experiments and the most commonly used model for investigating etiology or novel therapeutic strategies in multiple sclerosis. Areas covered: This review gives an overview of slice culture techniques and focuses on the use of organotypic cerebellar slice cultures on semi-permeable membranes for studying many aspects of axon myelination and cerebellar functions. Expert opinion: Cerebellar slice cultures are probably the easiest way to faithfully reproduce all stages of axon myelination/demyelination/remyelination in a three-dimensional neuronal network. However, in the cerebellum, neurological disability in multiple sclerosis also results from channelopathies which induce changes in Purkinje cell excitability. Cerebellar cultures offer easy access to electrophysiological approaches which are largely untapped and we believe that these cultures might be of great interest when studying changes in neuronal excitability, axonal conduction or synaptic properties that likely occur during multiple sclerosis.


Assuntos
Cerebelo/patologia , Doenças Desmielinizantes/fisiopatologia , Técnicas de Cultura de Órgãos/métodos , Animais , Axônios/metabolismo , Humanos , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/patologia , Células de Purkinje/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA