Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 105(5): 1448-1460, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33100151

RESUMO

Studying spatial and temporal plant disease dynamics helps us to understand pathogen dispersal processes and improve disease control recommendations. In this study, three cacao plots devoid of primary inoculum of Phytophthora megakarya (causal agent of cacao black pod rot disease) upon establishment in 2006 were monitored for presence of disease on a weekly basis from 2009 to 2016. Ripley's K(r) function, join count statistics, and Fisher's Exact test were used to analyze spatial and temporal disease dynamics. Disease distribution maps showed aggregated disease patterns in all plots; however, for the years of disease onset, exogenous primary infections were mostly randomly distributed. The K(r) function confirmed these results indicating that inoculum generally disperses only over short distances. Moreover, significant positive spatial autocorrelations showed that diseased trees were often clustered up to a distance of 3 to 9 m. Temporal disease progression was low, meaning that endogenous inoculum failed to establish itself, which is partly explained by rigorous phytosanitation and partly by unfavorable microclimatic conditions for disease development. Because P. megakarya had difficulty establishing itself in the plots, proximity to already infected cacao plantations drove infection dynamics. Thus, isolation of newly established cacao plantations from infected ones and rigorous phytosanitation as a preventive strategy appears to be an effective approach to control cacao black pod rot disease for newly established cacao plantations.


Assuntos
Cacau , Epidemias , Phytophthora , Doenças das Plantas , Árvores
2.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34904938

RESUMO

The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930-2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.


Assuntos
Olea/microbiologia , Sequenciamento Completo do Genoma/métodos , Xylella/classificação , Adaptação Fisiológica , América Central , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Filogenia , Filogeografia , Doenças das Plantas/microbiologia , Xylella/genética , Xylella/isolamento & purificação
3.
Front Plant Sci ; 9: 1554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429860

RESUMO

Impact of host quantitative resistance on pathogen evolution is still poorly documented. In our study, we characterized the adaptation of the pathogenic fungus Colletotrichum gloeosporioides, to the quantitative resistance of its host, the water yam (Dioscorea alata). Genetic and pathogenic diversities of C. gloeosporioides populations were specified at the field scale. We used nuclear markers to describe fungal population structuring within and between six fields of three cultivars differently susceptible to the fungus. Strain aggressiveness was then quantified in the laboratory through cross-inoculation tests. The high level of genetic diversity and significant linkage disequilibrium revealed a significant influence of clonal reproduction in the C. gloeosporioides evolution. The recorded fungal migration between fields was weak (evidence for a dispersion mode via tubers rather than splashing dispersal), which provides the first molecular evidence for limited C. gloeosporioides migration via yam tuber exchanges. C. gloeosporioides's populations are adapted to their host resistance. The aggressiveness of the fungal clones seems to have evolved toward an accumulation of components specific to each host cultivar. Despite the remaining marks of adaptation to the former widely cultivated host, adaptation to current cultivars was clearly depicted.

4.
Appl Environ Microbiol ; 68(12): 6138-45, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12450838

RESUMO

This study investigated genetic polymorphism on a local scale in Puccinia striiformis f. sp. tritici populations during natural epidemics, in four fields located in northern France and sampled in 1998 or 1999. Two hundred and forty-seven isolates were analyzed for their amplified fragment length polymorphism (AFLP) pattern through four primer combinations, and 194 of them were also tested for their virulence factors. Only one or two pathotypes were found in each field, and all isolates had virulence v17, matching the recently introduced Yr17 resistance gene. Polymorphism on a field scale was low. Although 67 loci were polymorphic, 77% of the isolates had the same AFLP pattern, all other patterns being rare or unique. Analyses of the genetic distance between AFLP patterns based on the Jaccard index allowed us to define 12 groups, but a bootstrap analysis showed that all isolates could be assigned to a single clonal lineage. This leads us to conclude that P. striiformis f. sp. tritici populations are clonal on a field scale in northern France.


Assuntos
Basidiomycota/genética , Basidiomycota/patogenicidade , Variação Genética , Genótipo , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo Genético , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA