RESUMO
A major challenge in understanding SARS-CoV-2 evolution is interpreting the antigenic and functional effects of emerging mutations in the viral spike protein. Here, we describe a deep mutational scanning platform based on non-replicative pseudotyped lentiviruses that directly quantifies how large numbers of spike mutations impact antibody neutralization and pseudovirus infection. We apply this platform to produce libraries of the Omicron BA.1 and Delta spikes. These libraries each contain â¼7,000 distinct amino acid mutations in the context of up to â¼135,000 unique mutation combinations. We use these libraries to map escape mutations from neutralizing antibodies targeting the receptor-binding domain, N-terminal domain, and S2 subunit of spike. Overall, this work establishes a high-throughput and safe approach to measure how â¼105 combinations of mutations affect antibody neutralization and spike-mediated infection. Notably, the platform described here can be extended to the entry proteins of many other viruses.
Assuntos
COVID-19 , Vírus de RNA , Humanos , SARS-CoV-2/genética , Mutação , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
The novel coronavirus SARS-CoV-2 was first detected in the Pacific Northwest region of the United States in January 2020, with subsequent COVID-19 outbreaks detected in all 50 states by early March. To uncover the sources of SARS-CoV-2 introductions and patterns of spread within the United States, we sequenced nine viral genomes from early reported COVID-19 patients in Connecticut. Our phylogenetic analysis places the majority of these genomes with viruses sequenced from Washington state. By coupling our genomic data with domestic and international travel patterns, we show that early SARS-CoV-2 transmission in Connecticut was likely driven by domestic introductions. Moreover, the risk of domestic importation to Connecticut exceeded that of international importation by mid-March regardless of our estimated effects of federal travel restrictions. This study provides evidence of widespread sustained transmission of SARS-CoV-2 within the United States and highlights the critical need for local surveillance.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/transmissão , Pneumonia Viral/transmissão , Viagem , Betacoronavirus/isolamento & purificação , COVID-19 , Connecticut/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Funções Verossimilhança , Pandemias , Filogenia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Viagem/legislação & jurisprudência , Estados Unidos/epidemiologia , Washington/epidemiologiaRESUMO
Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3-5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.
Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Estações do Ano , COVID-19/diagnóstico , COVID-19/epidemiologia , Europa (Continente)/epidemiologia , Genótipo , Humanos , Filogenia , SARS-CoV-2/genética , Fatores de Tempo , Viagem/legislação & jurisprudência , Viagem/estatística & dados numéricosRESUMO
We propose a novel, non-discriminatory classification of monkeypox virus diversity. Together with the World Health Organization, we named three clades (I, IIa and IIb) in order of detection. Within IIb, the cause of the current global outbreak, we identified multiple lineages (A.1, A.2, A.1.1 and B.1) to support real-time genomic surveillance.
Assuntos
Monkeypox virus , Mpox , Surtos de Doenças , Genômica , Humanos , Mpox/diagnóstico , Mpox/epidemiologia , Monkeypox virus/genéticaRESUMO
A globally implemented unified phylogenetic classification for human respiratory syncytial virus (HRSV) below the subgroup level remains elusive. We formulated global consensus of HRSV classification on the basis of the challenges and limitations of our previous proposals and the future of genomic surveillance. From a high-quality curated dataset of 1,480 HRSV-A and 1,385 HRSV-B genomes submitted to GenBank and GISAID (https://www.gisaid.org) public sequence databases through March 2023, we categorized HRSV-A/B sequences into lineages based on phylogenetic clades and amino acid markers. We defined 24 lineages within HRSV-A and 16 within HRSV-B and provided guidelines for defining prospective lineages. Our classification demonstrated robustness in its applicability to both complete and partial genomes. We envision that this unified HRSV classification proposal will strengthen HRSV molecular epidemiology on a global scale.
Assuntos
Genoma Viral , Filogenia , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/classificação , Humanos , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/epidemiologiaRESUMO
SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of GâT mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of CâT mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.
Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , SARS-CoV-2 , Mutação , Taxa de Mutação , Genoma ViralRESUMO
Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome ('whole genome') sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68's rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.
Assuntos
COVID-19 , Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Adulto , Idoso , Criança , Demografia , Surtos de Doenças , Enterovirus Humano D/genética , Infecções por Enterovirus/epidemiologia , Humanos , Filogenia , SARS-CoV-2RESUMO
With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.
Assuntos
COVID-19/virologia , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Primers do DNA , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação , Poliproteínas/genética , Proteínas Virais/genéticaRESUMO
BackgroundDespite the unprecedented measures implemented globally in early 2020 to prevent the spread of SARS-CoV-2, Sweden, as many other countries, experienced a severe first wave during the COVID-19 pandemic.AimWe investigated the introduction and spread of SARS-CoV-2 into Sweden.MethodsWe analysed stored respiratory specimens (n = 1,979), sampled 7 February-2 April 2020, by PCR for SARS-CoV-2 and sequenced PCR-positive specimens. Sequences generated from newly detected cases and stored positive specimens February-June 2020 (n = 954) were combined with sequences (Sweden: n = 730; other countries: n = 129,913) retrieved from other sources for Nextstrain clade assignment and phylogenetic analyses.ResultsTwelve previously unrecognised SARS-CoV-2 cases were identified: the earliest was sampled on 3 March, 1â¯week before recognised community transmission. We showed an early influx of clades 20A and 20B from Italy (201/328, 61% of cases exposed abroad) and clades 19A and 20C from Austria (61/328, 19%). Clade 20C dominated the first wave (20C: 908/1,684, 54%; 20B: 438/1,684, 26%; 20A: 263/1,684, 16%), and 800 of 1,684 (48%) Swedish sequences formed a country-specific 20C cluster defined by a spike mutation (G24368T). At the regional level, the proportion of clade 20C sequences correlated with an earlier weighted mean date of COVID-19 deaths.ConclusionCommunity transmission in Sweden started when mitigation efforts still focused on preventing influx. This created a transmission advantage for clade 20C, likely introduced from ongoing cryptic spread in Austria. Therefore, pandemic preparedness should have a comprehensive approach, including capacity for large-scale diagnostics to allow early detection of travel-related cases and community transmission.
Assuntos
COVID-19 , Pandemias , Filogenia , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , Suécia/epidemiologia , SARS-CoV-2/genética , Feminino , Masculino , Viagem , AdultoRESUMO
⢠Human immunodeficiency virus (HIV) drug resistance has implications for antiretroviral treatment strategies and for containing the HIV pandemic because the development of HIV drug resistance leads to the requirement for antiretroviral drugs that may be less effective, less well-tolerated, and more expensive than those used in first-line regimens. ⢠HIV drug resistance studies are designed to determine which HIV mutations are selected by antiretroviral drugs and, in turn, how these mutations affect antiretroviral drug susceptibility and response to future antiretroviral treatment regimens. ⢠Such studies collectively form a vital knowledge base essential for monitoring global HIV drug resistance trends, interpreting HIV genotypic tests, and updating HIV treatment guidelines. ⢠Although HIV drug resistance data are collected in many studies, such data are often not publicly shared, prompting the need to recommend best practices to encourage and standardize HIV drug resistance data sharing. ⢠In contrast to other viruses, sharing HIV sequences from phylogenetic studies of transmission dynamics requires additional precautions as HIV transmission is criminalized in many countries and regions. ⢠Our recommendations are designed to ensure that the data that contribute to HIV drug resistance knowledge will be available without undue hardship to those publishing HIV drug resistance studies and without risk to people living with HIV.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Filogenia , HIV-1/genética , Farmacorresistência Viral/genética , Antirretrovirais/uso terapêutico , Mutação , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêuticoRESUMO
When two influenza viruses co-infect the same cell, they can exchange genome segments in a process known as reassortment. Reassortment is an important source of genetic diversity and is known to have been involved in the emergence of most pandemic influenza strains. However, because of the difficulty in identifying reassortment events from viral sequence data, little is known about their role in the evolution of the seasonal influenza viruses. Here we introduce TreeKnit, a method that infers ancestral reassortment graphs (ARG) from two segment trees. It is based on topological differences between trees, and proceeds in a greedy fashion by finding regions that are compatible in the two trees. Using simulated genealogies with reassortments, we show that TreeKnit performs well in a wide range of settings and that it is as accurate as a more principled bayesian method, while being orders of magnitude faster. Finally, we show that it is possible to use the inferred ARG to better resolve segment trees and to construct more informative visualizations of reassortments.
Assuntos
Influenza Humana , Orthomyxoviridae , Teorema de Bayes , Genoma Viral/genética , Humanos , Orthomyxoviridae/genética , Filogenia , Vírus Reordenados/genéticaRESUMO
Seasonal influenza viruses repeatedly infect humans in part because they rapidly change their antigenic properties and evade host immune responses, necessitating frequent updates of the vaccine composition. Accurate predictions of strains circulating in the future could therefore improve the vaccine match. Here, we studied the predictability of frequency dynamics and fixation of amino acid substitutions. Current frequency was the strongest predictor of eventual fixation, as expected in neutral evolution. Other properties, such as occurrence in previously characterized epitopes or high Local Branching Index (LBI) had little predictive power. Parallel evolution was found to be moderately predictive of fixation. Although the LBI had little power to predict frequency dynamics, it was still successful at picking strains representative of future populations. The latter is due to a tendency of the LBI to be high for consensus-like sequences that are closer to the future than the average sequence. Simulations of models of adapting populations, in contrast, show clear signals of predictability. This indicates that the evolution of influenza HA and NA, while driven by strong selection pressure to change, is poorly described by common models of directional selection such as traveling fitness waves.
Assuntos
Evolução Molecular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Neuraminidase/genética , Adaptação Biológica/genética , Substituição de Aminoácidos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Modelos GenéticosRESUMO
Infecting large portions of the global population, seasonal influenza is a major burden on societies around the globe. While the global source sink dynamics of the different seasonal influenza viruses have been studied intensively, its local spread remains less clear. In order to improve our understanding of how influenza is transmitted on a city scale, we collected an extremely densely sampled set of influenza sequences alongside patient metadata. To do so, we sequenced influenza viruses isolated from patients of two different hospitals, as well as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The genetic sequences reveal that repeated introductions into the city drove the influenza season. We then reconstruct how the effective reproduction number changed over the course of the season. While we did not find that transmission dynamics in Basel correlate with humidity or school closures, we did find some evidence that it may positively correlated with temperature. Alongside the genetic sequence data that allows us to see how individual cases are connected, we gathered patient information, such as the age or household status. Zooming into the local transmission outbreaks suggests that the elderly were to a large extent infected within their own transmission network. In the remaining transmission network, our analyses suggest that school-aged children likely play a more central role than pre-school aged children. These patterns will be valuable to plan interventions combating the spread of respiratory diseases within cities given that similar patterns are observed for other influenza seasons and cities.
Assuntos
Surtos de Doenças , Epidemias , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , Adolescente , Criança , Pré-Escolar , Cidades , Humanos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/transmissão , Influenza Humana/virologia , Filogenia , Estações do Ano , Suíça/epidemiologiaRESUMO
Horizontal transfer, gene loss, and duplication result in dynamic bacterial genomes shaped by a complex mixture of different modes of evolution. Closely related strains can differ in the presence or absence of many genes, and the total number of distinct genes found in a set of related isolates-the pan-genome-is often many times larger than the genome of individual isolates. We have developed a pipeline that efficiently identifies orthologous gene clusters in the pan-genome. This pipeline is coupled to a powerful yet easy-to-use web-based visualization for interactive exploration of the pan-genome. The visualization consists of connected components that allow rapid filtering and searching of genes and inspection of their evolutionary history. For each gene cluster, panX displays an alignment, a phylogenetic tree, maps mutations within that cluster to the branches of the tree and infers gain and loss of genes on the core-genome phylogeny. PanX is available at pangenome.de. Custom pan-genomes can be visualized either using a web server or by serving panX locally as a browser-based application.
Assuntos
Algoritmos , Bactérias/genética , Biologia Computacional/métodos , Genoma Bacteriano/genética , Genômica/métodos , Software , Bactérias/classificação , Evolução Molecular , Família Multigênica , Filogenia , Reprodutibilidade dos TestesRESUMO
We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.
Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Coronavirus/genética , Genoma Viral/genética , Pandemias , Pneumonia Viral/epidemiologia , RNA Viral/análise , RNA Polimerase Dependente de RNA/genética , Sequência de Bases , Betacoronavirus/patogenicidade , COVID-19 , Coronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Europa (Continente)/epidemiologia , Humanos , Filogeografia , Pneumonia Viral/virologia , RNA Viral/genética , SARS-CoV-2 , Síndrome Respiratória Aguda Grave , Análise Espaço-Temporal , Organização Mundial da SaúdeRESUMO
Summary: Understanding the spread and evolution of pathogens is important for effective public health measures and surveillance. Nextstrain consists of a database of viral genomes, a bioinformatics pipeline for phylodynamics analysis, and an interactive visualization platform. Together these present a real-time view into the evolution and spread of a range of viral pathogens of high public health importance. The visualization integrates sequence data with other data types such as geographic information, serology, or host species. Nextstrain compiles our current understanding into a single accessible location, open to health professionals, epidemiologists, virologists and the public alike. Availability and implementation: All code (predominantly JavaScript and Python) is freely available from github.com/nextstrain and the web-application is available at nextstrain.org.
Assuntos
Biologia Computacional , Evolução Molecular , Genoma Viral , Software , Vírus/patogenicidade , Bases de Dados GenéticasRESUMO
Human seasonal influenza viruses evolve rapidly, enabling the virus population to evade immunity and reinfect previously infected individuals. Antigenic properties are largely determined by the surface glycoprotein hemagglutinin (HA), and amino acid substitutions at exposed epitope sites in HA mediate loss of recognition by antibodies. Here, we show that antigenic differences measured through serological assay data are well described by a sum of antigenic changes along the path connecting viruses in a phylogenetic tree. This mapping onto the tree allows prediction of antigenicity from HA sequence data alone. The mapping can further be used to make predictions about the makeup of the future A(H3N2) seasonal influenza virus population, and we compare predictions between models with serological and sequence data. To make timely model output readily available, we developed a web browser-based application that visualizes antigenic data on a continuously updated phylogeny.
Assuntos
Variação Antigênica/genética , Antígenos Virais/imunologia , Betainfluenzavirus/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Sequência de Aminoácidos , Antígenos Virais/genética , Gráficos por Computador , Simulação por Computador , Evolução Molecular , Previsões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Betainfluenzavirus/genética , Modelos Imunológicos , Dados de Sequência Molecular , Fenótipo , Filogenia , Estações do Ano , SoftwareRESUMO
The rapid development of sequencing technologies has to led to an explosion of pathogen sequence data, which are increasingly collected as part of routine surveillance or clinical diagnostics. In public health, sequence data are used to reconstruct the evolution of pathogens, to anticipate future spread, and to target interventions. In clinical settings, whole-genome sequencing can identify pathogens at the strain level, can be used to predict phenotypes such as drug resistance and virulence, and can inform treatment by linking closely related cases. While sequencing has become cheaper, the analysis of sequence data has become an important bottleneck. Deriving interpretable and actionable results for a large variety of pathogens, each with its own complexity, from continuously updated data is a daunting task that requires flexible bioinformatic workflows and dissemination platforms. Here, we review recent developments in real-time analyses of pathogen sequence data, with a particular focus on the visualization and integration of sequence and phenotype data.
Assuntos
Visualização de Dados , Genoma Microbiano/genética , Análise de Sequência de DNA , Biologia Computacional , Bases de Dados Genéticas , Humanos , Infecções/diagnóstico , Infecções/epidemiologia , Infecções/microbiologia , Infecções/virologia , Epidemiologia Molecular , Filogenia , SoftwareRESUMO
Objectives: Colistin is a last-resort antibiotic against the critical-status pathogen Pseudomonas aeruginosa. There is still uncertainty regarding how to accurately measure colistin susceptibility in P. aeruginosa. Evaluation of antimicrobial susceptibility testing (AST) methods is largely hampered by the lack of resistant isolates and those around the susceptibility breakpoint. The aim of this study was to generate such strains in a morbidostat device for use in AST method evaluation. Methods: A morbidostat device was used to cultivate susceptible clinical strains into isolates with a wide range of colistin MICs. Subsequently, five commercial AST methods were compared against the gold standard broth microdilution (BMD) method: MICRONAUT-S, SensiTest, Sensititre, Rapid Polymyxin Pseudomonas and Etest. Results: A total of 131 P. aeruginosa isolates were used for colistin susceptibility test evaluation (100 colistin susceptible and 31 colistin resistant). The 31 colistin-resistant isolates evolved resistance in the morbidostat to different MIC ranges (4-512 mg/L, 100% resistance generation efficacy). The categorical agreement (CA) rates for MICRONAUT-S, SensiTest and Rapid Polymyxin Pseudomonas were 94.7%, 93.9% and 92.4%, respectively. The Sensititre achieved the highest CA score (96.9%), whereas the Etests had the lowest CA score (84%). The very major discrepancy (VMD) rates for all tests were between 3.2% and 67.7%. Conclusions: The morbidostat device can efficiently provide laboratories with colistin-resistant strains for test evaluation. Although CA rates were high for commercial AST methods except for Etests, none met the ≤1.5% CLSI limit for VMD rates. Performance was generally inferior when using isolates with low-level resistance.
Assuntos
Antibacterianos/farmacologia , Técnicas de Laboratório Clínico/instrumentação , Colistina/farmacologia , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/normas , Farmacorresistência Bacteriana Múltipla/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão/instrumentação , Humanos , Testes de Sensibilidade Microbiana/instrumentação , Testes de Sensibilidade Microbiana/métodos , Pseudomonas/efeitos dos fármacos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificaçãoRESUMO
Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses.