Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Circulation ; 147(17): 1291-1303, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36970983

RESUMO

BACKGROUND: During cardiomyocyte maturation, the centrosome, which functions as a microtubule organizing center in cardiomyocytes, undergoes dramatic structural reorganization where its components reorganize from being localized at the centriole to the nuclear envelope. This developmentally programmed process, referred to as centrosome reduction, has been previously associated with cell cycle exit. However, understanding of how this process influences cardiomyocyte cell biology, and whether its disruption results in human cardiac disease, remains unknown. We studied this phenomenon in an infant with a rare case of infantile dilated cardiomyopathy (iDCM) who presented with left ventricular ejection fraction of 18% and disrupted sarcomere and mitochondria structure. METHODS: We performed an analysis beginning with an infant who presented with a rare case of iDCM. We derived induced pluripotent stem cells from the patient to model iDCM in vitro. We performed whole exome sequencing on the patient and his parents for causal gene analysis. CRISPR/Cas9-mediated gene knockout and correction in vitro were used to confirm whole exome sequencing results. Zebrafish and Drosophila models were used for in vivo validation of the causal gene. Matrigel mattress technology and single-cell RNA sequencing were used to characterize iDCM cardiomyocytes further. RESULTS: Whole exome sequencing and CRISPR/Cas9 gene knockout/correction identified RTTN, the gene encoding the centrosomal protein RTTN (rotatin), as the causal gene underlying the patient's condition, representing the first time a centrosome defect has been implicated in a nonsyndromic dilated cardiomyopathy. Genetic knockdowns in zebrafish and Drosophila confirmed an evolutionarily conserved requirement of RTTN for cardiac structure and function. Single-cell RNA sequencing of iDCM cardiomyocytes showed impaired maturation of iDCM cardiomyocytes, which underlie the observed cardiomyocyte structural and functional deficits. We also observed persistent localization of the centrosome at the centriole, contrasting with expected programmed perinuclear reorganization, which led to subsequent global microtubule network defects. In addition, we identified a small molecule that restored centrosome reorganization and improved the structure and contractility of iDCM cardiomyocytes. CONCLUSIONS: This study is the first to demonstrate a case of human disease caused by a defect in centrosome reduction. We also uncovered a novel role for RTTN in perinatal cardiac development and identified a potential therapeutic strategy for centrosome-related iDCM. Future study aimed at identifying variants in centrosome components may uncover additional contributors to human cardiac disease.


Assuntos
Cardiomiopatia Dilatada , Feminino , Gravidez , Animais , Humanos , Cardiomiopatia Dilatada/genética , Peixe-Zebra , Volume Sistólico , Função Ventricular Esquerda , Centrossomo/metabolismo , Miócitos Cardíacos
2.
J Biol Chem ; 298(8): 102227, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780831

RESUMO

The Cullin-RING ligase 4 E3 ubiquitin ligase component Cereblon (CRBN) is a well-established target for a class of small molecules termed immunomodulatory drugs (IMiDs). These drugs drive CRBN to modulate the degradation of a number of neosubstrates required for the growth of multiple cancers. Whereas the mechanism underlying the activation of CRBN by IMiDs is well described, the normal physiological regulation of CRBN is poorly understood. We recently showed that CRBN is activated following exposure to Wnt ligands and subsequently mediates the degradation of a subset of physiological substrates. Among the Wnt-dependent substrates of CRBN is Casein kinase 1α (CK1α), a known negative regulator of Wnt signaling. Wnt-mediated degradation of CK1α occurs via its association with CRBN at a known IMiD binding pocket. Herein, we demonstrate that a small-molecule CK1α agonist, pyrvinium, directly prevents the Wnt-dependent interaction of CRBN with CK1α, attenuating the consequent CK1α degradation. We further show that pyrvinium disrupts the ability of CRBN to interact with CK1α at the IMiD binding pocket within the CRBN-CK1α complex. Of note, this function of pyrvinium is independent of its previously reported ability to enhance CK1α kinase activity. Furthermore, we also demonstrate that pyrvinium attenuates CRBN-induced Wnt pathway activation in vivo. Collectively, these results reveal a novel dual mechanism through which pyrvinium inhibits Wnt signaling by both attenuating the CRBN-mediated destabilization of CK1α and activating CK1α kinase activity.


Assuntos
Caseína Quinase Ialfa , Compostos de Pirvínio , Caseína Quinase Ialfa/metabolismo , Compostos de Pirvínio/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt
3.
J Cell Sci ; 131(10)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29678905

RESUMO

X-linked inhibitor of apoptosis (XIAP) plays an important role in preventing apoptotic cell death. XIAP has been shown to participate in signaling pathways, including Wnt signaling. XIAP regulates Wnt signaling by promoting the monoubiquitylation of the co-repressor Groucho/TLE family proteins, decreasing its affinity for the TCF/Lef family of transcription factors and allowing assembly of transcriptionally active ß-catenin-TCF/Lef complexes. We now demonstrate that XIAP is phosphorylated by GSK3 at threonine 180, and that an alanine mutant (XIAPT180A) exhibits decreased Wnt activity compared to wild-type XIAP in cultured human cells and in Xenopus embryos. Although XIAPT180A ubiquitylates TLE3 at wild-type levels in vitro, it exhibits a reduced capacity to ubiquitylate and bind TLE3 in human cells. XIAPT180A binds Smac (also known as DIABLO) and inhibits Fas-induced apoptosis to a similar degree to wild-type XIAP. Our studies uncover a new mechanism by which XIAP is specifically directed towards a Wnt signaling function versus its anti-apoptotic function. These findings have implications for development of anti-XIAP therapeutics for human cancers.


Assuntos
Treonina/metabolismo , Proteína Wnt3A/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Motivos de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosforilação , Ligação Proteica , Via de Sinalização Wnt , Proteína Wnt3A/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Xenopus
4.
Hum Mol Genet ; 24(15): 4443-53, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25972376

RESUMO

Kabuki syndrome (KS) is a rare multiple congenital anomaly syndrome characterized by distinctive facial features, global developmental delay, intellectual disability and cardiovascular and musculoskeletal abnormalities. While mutations in KMT2D have been identified in a majority of KS patients, a few patients have mutations in KDM6A. We analyzed 40 individuals clinically diagnosed with KS for mutations in KMT2D and KDM6A. Mutations were detected in KMT2D in 12 and KDM6A in 4 cases, respectively. Observed mutations included single-nucleotide variations and indels leading to frame shifts, nonsense, missense or splice-site alterations. In two cases, we discovered overlapping chromosome X microdeletions containing KDM6A. To further elucidate the functional roles of KMT2D and KDM6A, we knocked down the expression of their orthologs in zebrafish. Following knockdown of kmt2d and the two zebrafish paralogs kdm6a and kdm6al, we analyzed morphants for developmental abnormalities in tissues that are affected in individuals with KS, including craniofacial structures, heart and brain. The kmt2d morphants exhibited severe abnormalities in all tissues examined. Although the kdm6a and kdm6al morphants had similar brain abnormalities, kdm6a morphants exhibited craniofacial phenotypes, whereas kdm6al morphants had prominent defects in heart development. Our results provide further support for the similar roles of KMT2D and KDM6A in the etiology of KS by using a vertebrate model organism to provide direct evidence of their roles in the development of organs and tissues affected in KS patients.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Cardiopatias Congênitas/genética , Doenças Hematológicas/genética , Histona Desmetilases/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Doenças Vestibulares/genética , Peixe-Zebra/genética , Anormalidades Múltiplas/fisiopatologia , Animais , Encéfalo/anormalidades , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/fisiopatologia , Face/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Doenças Hematológicas/fisiopatologia , Humanos , Mutação , Doenças Vestibulares/fisiopatologia , Peixe-Zebra/crescimento & desenvolvimento
5.
Exp Hematol Oncol ; 13(1): 13, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291540

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) stands as a formidable challenge in oncology because of its aggressive nature and severely limited treatment options. Despite decades of research, the survival rates for GBM remain effectively stagnant. A defining hallmark of GBM is a highly acidic tumor microenvironment, which is thought to activate pro-tumorigenic pathways. This acidification is the result of altered tumor metabolism favoring aerobic glycolysis, a phenomenon known as the Warburg effect. Low extracellular pH confers radioresistant tumors to glial cells. Notably GPR68, an acid sensing GPCR, is upregulated in radioresistant GBM. Usage of Lorazepam, which has off target agonism of GPR68, is linked to worse clinical outcomes for a variety of cancers. However, the role of tumor microenvironment acidification in GPR68 activation has not been assessed in cancer. Here we interrogate the role of GPR68 specifically in GBM cells using a novel highly specific small molecule inhibitor of GPR68 named Ogremorphin (OGM) to induce the iron mediated cell death pathway: ferroptosis. METHOD: OGM was identified in a non-biased zebrafish embryonic development screen and validated with Morpholino and CRISPR based approaches. Next, A GPI-anchored pH reporter, pHluorin2, was stably expressed in U87 glioblastoma cells to probe extracellular acidification. Cell survival assays, via nuclei counting and cell titer glo, were used to demonstrate sensitivity to GPR68 inhibition in twelve immortalized and PDX GBM lines. To determine GPR68 inhibition's mechanism of cell death we use DAVID pathway analysis of RNAseq. Our major indication, ferroptosis, was then confirmed by western blotting and qRT-PCR of reporter genes including TFRC. This finding was further validated by transmission electron microscopy and liperfluo staining to assess lipid peroxidation. Lastly, we use siRNA and CRISPRi to demonstrate the critical role of ATF4 suppression via GPR68 for GBM survival. RESULTS: We used a pHLourin2 probe to demonstrate how glioblastoma cells acidify their microenvironment to activate the commonly over expressed acid sensing GPCR, GPR68. Using our small molecule inhibitor OGM and genetic means, we show that blocking GPR68 signaling results in robust cell death in all thirteen glioblastoma cell lines tested, irrespective of genetic and phenotypic heterogeneity, or resistance to the mainstay GBM chemotherapeutic temozolomide. We use U87 and U138 glioblastoma cell lines to show how selective induction of ferroptosis occurs in an ATF4-dependent manner. Importantly, OGM was not-acutely toxic to zebrafish and its inhibitory effects were found to spare non-malignant neural cells. CONCLUSION: These results indicate GPR68 emerges as a critical sensor for an autocrine pro-tumorigenic signaling cascade triggered by extracellular acidification in glioblastoma cells. In this context, GPR68 suppresses ATF4, inhibition of GPR68 increases expression of ATF4 which leads to ferroptotic cell death. These findings provide a promising therapeutic approach to selectively induce ferroptosis in glioblastoma cells while sparing healthy neural tissue.

6.
Nat Commun ; 14(1): 6173, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798301

RESUMO

The relative abundance of Wnt receptors plays a crucial role in controlling Wnt signaling in tissue homeostasis and human disease. While the ubiquitin ligases that ubiquitylate Wnt receptors are well-characterized, the deubiquitylase that reverses these reactions remains unclear. Herein, we identify USP46, UAF1, and WDR20 (USP46 complex) as positive regulators of Wnt signaling in cultured human cells. We find that the USP46 complex is similarly required for Wnt signaling in Xenopus and zebrafish embryos. We demonstrate that Wnt signaling promotes the association between the USP46 complex and cell surface Wnt coreceptor, LRP6. Knockdown of USP46 decreases steady-state levels of LRP6 and increases the level of ubiquitylated LRP6. In contrast, overexpression of the USP46 complex blocks ubiquitylation of LRP6 by the ubiquitin ligases RNF43 and ZNFR3. Size exclusion chromatography studies suggest that the size of the USP46 cytoplasmic complex increases upon Wnt stimulation. Finally, we show that USP46 is essential for Wnt-dependent intestinal organoid viability, likely via its role in LRP6 receptor homeostasis. We propose a model in which the USP46 complex increases the steady-state level of cell surface LRP6 and facilitates the assembly of LRP6 into signalosomes via a pruning mechanism that removes sterically hindering ubiquitin chains.


Assuntos
Endopeptidases , Via de Sinalização Wnt , beta Catenina , Animais , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Ligases/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores Wnt , Ubiquitina , Peixe-Zebra/metabolismo , Endopeptidases/metabolismo
7.
Nat Commun ; 12(1): 5263, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489457

RESUMO

Immunomodulatory drugs (IMiDs) are important for the treatment of multiple myeloma and myelodysplastic syndrome. Binding of IMiDs to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase, induces cancer cell death by targeting key neo-substrates for degradation. Despite this clinical significance, the physiological regulation of CRBN remains largely unknown. Herein we demonstrate that Wnt, the extracellular ligand of an essential signal transduction pathway, promotes the CRBN-dependent degradation of a subset of proteins. These substrates include Casein kinase 1α (CK1α), a negative regulator of Wnt signaling that functions as a key component of the ß-Catenin destruction complex. Wnt stimulation induces the interaction of CRBN with CK1α and its resultant ubiquitination, and in contrast with previous reports does so in the absence of an IMiD. Mechanistically, the destruction complex is critical in maintaining CK1α stability in the absence of Wnt, and in recruiting CRBN to target CK1α for degradation in response to Wnt. CRBN is required for physiological Wnt signaling, as modulation of CRBN in zebrafish and Drosophila yields Wnt-driven phenotypes. These studies demonstrate an IMiD-independent, Wnt-driven mechanism of CRBN regulation and provide a means of controlling Wnt pathway activity by CRBN, with relevance for development and disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeo Hidrolases/genética , Ubiquitina-Proteína Ligases/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caseína Quinase Ialfa/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero , Evolução Molecular , Células HEK293 , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Lenalidomida/química , Lenalidomida/farmacologia , Camundongos , Organoides , Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Sci Rep ; 10(1): 9831, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561790

RESUMO

Non-alcoholic fatty liver disease (NAFLD) affects over 30% of adults in the United States. Bone morphogenetic protein (BMP) signaling is known to contribute to hepatic fibrosis, but the role of BMP signaling in the development of NAFLD is unclear. In this study, treatment with either of two BMP inhibitors reduced hepatic triglyceride content in diabetic (db/db) mice. BMP inhibitor-induced decrease in hepatic triglyceride levels was associated with decreased mRNA encoding Dgat2, an enzyme integral to triglyceride synthesis. Treatment of hepatoma cells with BMP2 induced DGAT2 expression and activity via intracellular SMAD signaling. In humans we identified a rare missense single nucleotide polymorphism in the BMP type 1 receptor ALK6 (rs34970181;R371Q) associated with a 2.1-fold increase in the prevalence of NAFLD. In vitro analyses revealed R371Q:ALK6 is a previously unknown constitutively active receptor. These data show that BMP signaling is an important determinant of NAFLD in a murine model and is associated with NAFLD in humans.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais , Animais , Biomarcadores/sangue , Linhagem Celular Tumoral , Diacilglicerol O-Aciltransferase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
9.
Mech Dev ; 156: 20-31, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30904594

RESUMO

In a screen for human kinases that regulate Xenopus laevis embryogenesis, we identified Nagk and other components of the UDP-GlcNAc glycosylation salvage pathway as regulators of anteroposterior patterning and Wnt signaling. We find that the salvage pathway does not affect other major embryonic signaling pathways (Fgf, TGFß, Notch, or Shh), thereby demonstrating specificity for Wnt signaling. We show that the role of the salvage pathway in Wnt signaling is evolutionarily conserved in zebrafish and Drosophila. Finally, we show that GlcNAc is essential for the growth of intestinal enteroids, which are highly dependent on Wnt signaling for growth and maintenance. We propose that the Wnt pathway is sensitive to alterations in the glycosylation state of a cell and acts as a nutritional sensor in order to couple growth/proliferation with its metabolic status. We also propose that the clinical manifestations observed in congenital disorders of glycosylation (CDG) in humans may be due, in part, to their effects on Wnt signaling during development.


Assuntos
Desenvolvimento Embrionário/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Via de Sinalização Wnt/genética , Xenopus laevis/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Glicosilação , Humanos , Xenopus laevis/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
10.
Biol Open ; 7(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29945873

RESUMO

Cdc14 is an evolutionarily conserved serine/threonine phosphatase. Originally identified in Saccharomyces cerevisiae as a cell cycle regulator, its role in other eukaryotic organisms remains unclear. In Drosophila melanogaster, Cdc14 is encoded by a single gene, thus facilitating its study. We found that Cdc14 expression is highest in the testis of adult flies and that cdc14 null flies are viable. cdc14 null female and male flies do not display altered fertility. cdc14 null males, however, exhibit decreased sperm competitiveness. Previous studies have shown that Cdc14 plays a role in ciliogenesis during zebrafish development. In Drosophila, sensory neurons are ciliated. We found that the Drosophila cdc14 null mutants have defects in chemosensation and mechanosensation as indicated by decreased avoidance of repellant substances and decreased response to touch. In addition, we show that cdc14 null mutants have defects in lipid metabolism and resistance to starvation. These studies highlight the diversity of Cdc14 function in eukaryotes despite its structural conservation.

11.
Clin Cancer Res ; 23(8): 2027-2037, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27678457

RESUMO

Purpose: The bromodomain and extra-terminal domain (BET) family proteins are epigenetic readers for acetylated histone marks. Emerging BET bromodomain inhibitors have exhibited antineoplastic activities in a wide range of human cancers through suppression of oncogenic transcription factors, including MYC. However, the preclinical activities of BET inhibitors in advanced solid cancers are moderate at best. To improve BET-targeted therapy, we interrogated mechanisms mediating resistance to BET inhibitors in colorectal cancer.Experimental Design: Using a panel of molecularly defined colorectal cancer cell lines, we examined the impact of BET inhibition on cellular proliferation and survival as well as MYC activity. We further tested the ability of inhibitors targeting the RAF/MEK/ERK (MAPK) pathway to enhance MYC suppression and circumvent intrinsic resistance to BET inhibitors. Key findings were validated using genetic approaches.Results: BET inhibitors as monotherapy moderately reduced colorectal cancer cell proliferation and MYC expression. Blockade of the MAPK pathway synergistically sensitized colorectal cancer cells to BET inhibitors, leading to potent apoptosis and MYC downregulation in vitro and in vivo A combination of JQ1 and trametinib, but neither agent alone, induced significant regression of subcutaneous colorectal cancer xenografts.Conclusions: Our findings suggest that the MAPK pathway confers intrinsic resistance to BET inhibitors in colorectal cancer and propose an effective combination strategy for the treatment of colorectal cancer. Clin Cancer Res; 23(8); 2027-37. ©2016 AACR.


Assuntos
Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Sci Signal ; 10(485)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655862

RESUMO

Constitutive WNT activity drives the growth of various human tumors, including nearly all colorectal cancers (CRCs). Despite this prominence in cancer, no WNT inhibitor is currently approved for use in the clinic largely due to the small number of druggable signaling components in the WNT pathway and the substantial toxicity to normal gastrointestinal tissue. We have shown that pyrvinium, which activates casein kinase 1α (CK1α), is a potent inhibitor of WNT signaling. However, its poor bioavailability limited the ability to test this first-in-class WNT inhibitor in vivo. We characterized a novel small-molecule CK1α activator called SSTC3, which has better pharmacokinetic properties than pyrvinium, and found that it inhibited the growth of CRC xenografts in mice. SSTC3 also attenuated the growth of a patient-derived metastatic CRC xenograft, for which few therapies exist. SSTC3 exhibited minimal gastrointestinal toxicity compared to other classes of WNT inhibitors. Consistent with this observation, we showed that the abundance of the SSTC3 target, CK1α, was decreased in WNT-driven tumors relative to normal gastrointestinal tissue, and knocking down CK1α increased cellular sensitivity to SSTC3. Thus, we propose that distinct CK1α abundance provides an enhanced therapeutic index for pharmacological CK1α activators to target WNT-driven tumors.


Assuntos
Antineoplásicos/farmacologia , Benzoatos/farmacologia , Caseína Quinase Ialfa/metabolismo , Ativadores de Enzimas/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Wnt/metabolismo , Animais , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica , Técnicas de Cultura de Órgãos , Fosforilação , Compostos de Pirvínio/química , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto , Xenopus laevis
13.
Cell Rep ; 15(9): 1920-9, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27210761

RESUMO

Upon Notch pathway activation, the receptor is cleaved to release the Notch intracellular domain (NICD), which translocates to the nucleus to activate gene transcription. Using Xenopus egg extracts, we have identified a Notch1-specific destruction signal (N1-Box). We show that mutations in the N1-Box inhibit NICD1 degradation and that the N1-Box is transferable for the promotion of degradation of heterologous proteins in Xenopus egg extracts and in cultured human cells. Mutation of the N1-Box enhances Notch1 activity in cultured human cells and zebrafish embryos. Human cancer mutations within the N1-Box enhance Notch1 signaling in transgenic zebrafish, highlighting the physiological relevance of this destruction signal. We find that binding of the Notch nuclear factor, CSL, to the N1-Box blocks NICD1 turnover. Our studies reveal a mechanism by which degradation of NICD1 is regulated by the N1-Box to minimize stochastic flux and to establish a threshold for Notch1 pathway activation.


Assuntos
Proteólise , Receptor Notch1/química , Receptor Notch1/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , Extratos Celulares , Embrião não Mamífero/metabolismo , Proteínas F-Box/metabolismo , Células HEK293 , Humanos , Proteínas Musculares/metabolismo , Mutação/genética , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Xenopus , Peixe-Zebra/embriologia
14.
Elife ; 52016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996937

RESUMO

The comprehensive understanding of cellular signaling pathways remains a challenge due to multiple layers of regulation that may become evident only when the pathway is probed at different levels or critical nodes are eliminated. To discover regulatory mechanisms in canonical WNT signaling, we conducted a systematic forward genetic analysis through reporter-based screens in haploid human cells. Comparison of screens for negative, attenuating and positive regulators of WNT signaling, mediators of R-spondin-dependent signaling and suppressors of constitutive signaling induced by loss of the tumor suppressor adenomatous polyposis coli or casein kinase 1α uncovered new regulatory features at most levels of the pathway. These include a requirement for the transcription factor AP-4, a role for the DAX domain of AXIN2 in controlling ß-catenin transcriptional activity, a contribution of glycophosphatidylinositol anchor biosynthesis and glypicans to R-spondin-potentiated WNT signaling, and two different mechanisms that regulate signaling when distinct components of the ß-catenin destruction complex are lost. The conceptual and methodological framework we describe should enable the comprehensive understanding of other signaling systems.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Testes Genéticos/métodos , Via de Sinalização Wnt , Caseína Quinase I/deficiência , Proteínas do Citoesqueleto/deficiência , Genes Reporter , Haploidia , Humanos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
15.
Cancer Res ; 76(12): 3593-603, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197169

RESUMO

In many cancers, aberrant Notch activity has been demonstrated to play a role in the initiation and maintenance of the neoplastic phenotype and in cancer stem cells, which may allude to its additional involvement in metastasis and resistance to therapy. Therefore, Notch is an exceedingly attractive therapeutic target in cancer, but the full range of potential targets within the pathway has been underexplored. To date, there are no small-molecule inhibitors that directly target the intracellular Notch pathway or the assembly of the transcriptional activation complex. Here, we describe an in vitro assay that quantitatively measures the assembly of the Notch transcriptional complex on DNA. Integrating this approach with computer-aided drug design, we explored potential ligand-binding sites and screened for compounds that could disrupt the assembly of the Notch transcriptional activation complex. We identified a small-molecule inhibitor, termed Inhibitor of Mastermind Recruitment-1 (IMR-1), that disrupted the recruitment of Mastermind-like 1 to the Notch transcriptional activation complex on chromatin, thereby attenuating Notch target gene transcription. Furthermore, IMR-1 inhibited the growth of Notch-dependent cell lines and significantly abrogated the growth of patient-derived tumor xenografts. Taken together, our findings suggest that a novel class of Notch inhibitors targeting the transcriptional activation complex may represent a new paradigm for Notch-based anticancer therapeutics, warranting further preclinical characterization. Cancer Res; 76(12); 3593-603. ©2016 AACR.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias/tratamento farmacológico , Receptores Notch/antagonistas & inibidores , Tiazolidinas/farmacologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Somitos/embriologia , Peixe-Zebra
16.
Biol Open ; 3(7): 669-76, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24972868

RESUMO

The Anaphase-Promoting Complex (APC) is a multi-subunit E3 ubiquitin ligase that coordinates progression through the cell cycle by temporally and spatially promoting the degradation of key proteins. Many of these targeted proteins have been shown to play important roles in regulating orderly progression through the cell cycle. Using a previously described Drosophila in vitro expression cloning approach, we screened for new substrates of the APC in Xenopus egg extract and identified Drosophila MCPH1 (dMCPH1), a protein encoded by the homolog of a causative gene for autosomal recessive primary microcephaly in humans. The dMCPH1-B splice form, but not the dMCPH1-C splice form, undergoes robust degradation in Xenopus interphase egg extract in a Cdh1-dependent manner. Degradation of dMCPH1-B is controlled by an N-terminal destruction box (D-box) motif as its deletion or mutation blocks dMCPH1-B degradation. dMCPH1 levels are increased in Drosophila morula (APC2) mutant embryos, consistent with dMCPH1 being an APC substrate in vivo. Using a purified, reconstituted system, we show that dMCPH1-B is ubiquitinated by APC(Cdh1), indicating that the effect of APC on dMCPH1-B ubiquitination and degradation is direct. Full-length human MCPH1 (hMCPH1) has been predicted to be an APC substrate based on its interaction with the APC subunit Cdc27. We were not able to detect changes in hMCPH1 levels during the cell cycle in cultured human cells. Overexpression of hMCPH1 (or dMCPH1-B) in developing Xenopus embryos, however, disrupts cell division, suggesting that proper regulation of hMCPH1 and dMCPH1-B activity plays a critical role in proper cell-cycle progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA