RESUMO
Preeclampsia (PE) is a heterogeneous disease for which the current clinical classification system is based on the presence or absence of specific clinical features. PE-associated placentas also show heterogeneous findings on pathologic examination, suggesting that further subclassification is possible. We combined clinical, pathologic, immunohistochemical, and transcriptomic profiling of placentas to develop integrated signatures for multiple subclasses of PE. In total, 303 PE and 1388 nonhypertensive control placentas were included. We found that maternal vascular malperfusion (MVM) in the placenta was associated with preterm PE with severe features and with small-for-gestational-age neonates. Interestingly, PE placentas with either MVM or no histologic pattern of injury showed a linear decrease in proliferative (p63+) cytotrophoblast per villous area with increasing gestational age, similar to placentas obtained from the nonhypertensive patient cohort; however, PE placentas with fetal vascular malperfusion or villitis of unknown etiology lost this phenotype. This is mainly because of cases of fetal vascular malperfusion in placentas of patients with preterm PE and villitis of unknown etiology in placentas of patients with term PE, which are associated with a decrease or increase, respectively, in the cytotrophoblast per villous area. Finally, a transcriptomic analysis identified pathways associated with hypoxia, inflammation, and reduced cell proliferation in PE-MVM placentas and further subclassified this group into extravillous trophoblast-high and extravillous trophoblast-low PE, confirmed using an immunohistochemical analysis of trophoblast lineage-specific markers. Our findings suggest that within specific histopathologic patterns of placental injury, PE can be subclassified based on specific cellular and molecular defects, allowing the identification of pathways that may be targeted for diagnostic and therapeutic purposes.
Assuntos
Patologia Clínica , Pré-Eclâmpsia , Feminino , Gravidez , Humanos , Trofoblastos , Placenta , Pré-Eclâmpsia/genética , TranscriptomaRESUMO
An increasing body of evidence points to significant spatio-temporal differences in early placental development between mouse and human, but a detailed comparison of placentae in these two species is missing. We set out to compare placentae from both species across gestation, with a focus on trophoblast progenitor markers. We found that CDX2 and ELF5, but not EOMES, are expressed in early post-implantation trophoblast subpopulations in both species. Genome-wide expression profiling of mouse and human placentae revealed clusters of genes with distinct co-expression patterns across gestation. Overall, there was a closer fit between patterns observed in the placentae when the inter-species comparison was restricted to human placentae through gestational week 16 (thus, excluding full-term samples), suggesting that the developmental timeline in mouse runs parallel to the first half of human placental development. In addition, we identified VGLL1 as a human-specific marker of proliferative cytotrophoblast, where it is co-expressed with the transcription factor TEAD4. As TEAD4 is involved in trophectoderm specification in the mouse, we posit a regulatory role for VGLL1 in early events during human placental development.
Assuntos
Placenta/metabolismo , Placentação/fisiologia , Animais , Fator de Transcrição CDX2/genética , Fator de Transcrição CDX2/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Idade Gestacional , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Família Multigênica , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Placentação/genética , Gravidez , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Trophoblast is the primary epithelial cell type in the placenta, a transient organ required for proper fetal growth and development. Different trophoblast subtypes are responsible for gas/nutrient exchange (syncytiotrophoblasts, STBs) and invasion and maternal vascular remodeling (extravillous trophoblasts, EVTs). Studies of early human placental development are severely hampered by the lack of a representative trophoblast stem cell (TSC) model with the capacity for self-renewal and the ability to differentiate into both STBs and EVTs. Primary cytotrophoblasts (CTBs) isolated from early-gestation (6-8 wk) human placentas are bipotential, a phenotype that is lost with increasing gestational age. We have identified a CDX2(+)/p63(+) CTB subpopulation in the early postimplantation human placenta that is significantly reduced later in gestation. We describe a reproducible protocol, using defined medium containing bone morphogenetic protein 4 by which human pluripotent stem cells (hPSCs) can be differentiated into CDX2(+)/p63(+) CTB stem-like cells. These cells can be replated and further differentiated into STB- and EVT-like cells, based on marker expression, hormone secretion, and invasive ability. As in primary CTBs, differentiation of hPSC-derived CTBs in low oxygen leads to reduced human chorionic gonadotropin secretion and STB-associated gene expression, instead promoting differentiation into HLA-G(+) EVTs in an hypoxia-inducible, factor-dependent manner. To validate further the utility of hPSC-derived CTBs, we demonstrated that differentiation of trisomy 21 (T21) hPSCs recapitulates the delayed CTB maturation and blunted STB differentiation seen in T21 placentae. Collectively, our data suggest that hPSCs are a valuable model of human placental development, enabling us to recapitulate processes that result in both normal and diseased pregnancies.
Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Placentação , Células-Tronco Pluripotentes , Trofoblastos/citologia , Fator de Transcrição CDX2/metabolismo , Feminino , Humanos , Hipóxia , Proteínas de Membrana/metabolismo , Gravidez , Trofoblastos/metabolismoRESUMO
Villous cytotrophoblasts are epithelial stem cells of the early human placenta, able to differentiate either into syncytiotrophoblasts in floating chorionic villi or extravillous trophoblasts (EVTs) at the anchoring villi. The signaling pathways regulating differentiation into these two lineages are incompletely understood. The bulk of placental growth and development in the first trimester occurs under low oxygen tension. One major mechanism by which oxygen regulates cellular function is through the hypoxia-inducible factor (HIF), a transcription factor complex stabilized under low oxygen tension to mediate cellular responses, including cell fate decisions. HIF is known to play a role in trophoblast differentiation in rodents; however, its role in human trophoblast differentiation is poorly understood. Using RNA profiling of sorted populations of primary first-trimester trophoblasts, we evaluated the first stage of EVT differentiation, the transition from epidermal growth factor receptor+ villous cytotrophoblasts into human leukocyte antigen-G+ proximal column EVT (pcEVT) and identified hypoxia as a major pcEVT-associated pathway. Using primary cytotrophoblasts, we determined that culture in low oxygen directs differentiation preferentially toward human leukocyte antigen-G+ pcEVT, and that an intact HIF complex is required for this process. Finally, using global RNA profiling, we identified integrin-linked kinase and associated cytoskeletal remodeling and adhesion to be among HIF-dependent pcEVT-associated signaling pathways. Taken together, we propose that oxygen regulates EVT differentiation through HIF-dependent modulation of various cell adhesion and morphology-related pathways.
Assuntos
Diferenciação Celular , Fator 1 Induzível por Hipóxia/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Hipóxia Celular/genética , Separação Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Oxigênio/farmacologia , Gravidez , Primeiro Trimestre da Gravidez/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Regulação para Cima/genéticaRESUMO
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder, affecting up to 10% of pregnancies worldwide. The primary etiology is considered to be abnormal development and function of placental cells called trophoblasts. We previously developed a two-step protocol for differentiation of human pluripotent stem cells, first into cytotrophoblast (CTB) progenitor-like cells, and then into both syncytiotrophoblast (STB)- and extravillous trophoblast (EVT)-like cells, and showed that it can model both normal and abnormal trophoblast differentiation. We have now applied this protocol to induced pluripotent stem cells (iPSC) derived from placentas of pregnancies with or without PE. While there were no differences in CTB induction or EVT formation, PE-iPSC-derived trophoblast showed a defect in syncytialization, as well as a blunted response to hypoxia. RNAseq analysis showed defects in STB formation and response to hypoxia; however, DNA methylation changes were minimal, corresponding only to changes in response to hypoxia. Overall, PE-iPSC recapitulated multiple defects associated with placental dysfunction, including a lack of response to decreased oxygen tension. This emphasizes the importance of the maternal microenvironment in normal placentation, and highlights potential pathways that can be targeted for diagnosis or therapy, while absence of marked DNA methylation changes suggests that other regulatory mechanisms mediate these alterations.
Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Pré-Eclâmpsia/patologia , Adulto , Estudos de Casos e Controles , Diferenciação Celular , Metilação de DNA/genética , Epigenoma , Feminino , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/patologia , Oxigênio , Fenótipo , Placenta/patologia , Gravidez , Análise de Componente Principal , RNA-Seq , Trofoblastos/patologia , Cordão Umbilical/patologia , Adulto JovemRESUMO
INTRODUCTION: High-altitude (>2500 m) residence augments the risk of intrauterine growth restriction (IUGR) and preeclampsia likely due, in part, to uteroplacental hypoperfusion. Previous genomic and transcriptomic studies in humans and functional studies in mice and humans suggest a role for AMP-activated protein kinase (AMPK) pathway in protecting against hypoxia-associated IUGR. AMPK is a metabolic sensor activated by hypoxia that is ubiquitously expressed in vascular beds and placenta. METHODS: We measured gene expression and protein levels of AMPK and its upstream regulators and downstream targets in human placentas from high (>2500 m) vs. moderate (~1700 m) and low (~100 m) altitude. RESULTS: We found that phosphorylated AMPK protein levels and its downstream target TSC2 were increased in placentas from high and moderate vs. low altitude, whereas the phosphorylated form of the downstream target translation repressor protein 4E-BP1 was increased in high compared to moderate as well as low altitude placentas. Mean birth weights progressively fell with increasing altitude but no infants, by study design, were clinically growth-restricted. Gene expression analysis showed moderate increases in PRKAG2, encoding the AMPK γ2 subunit, and mechanistic target of rapamycin, MTOR, expression. DISCUSSION: These results highlight a differential regulation of placental AMPK pathway activation in women residing at low, moderate or high altitude during pregnancy, suggesting AMPK may be serving as a metabolic regulator for integrating hypoxic stimuli with placental function.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Altitude , Regulação da Expressão Gênica , Placenta/metabolismo , Transdução de Sinais/genética , Adulto , Feminino , Humanos , Hipóxia/metabolismo , GravidezRESUMO
OBJECTIVE: To evaluate the association between subclinical and clinical chorioamnionitis and risk of preterm birth (PTB). METHODS: Demographic and clinical characteristics were abstracted from medical records and placental examinations performed (Nâ¯=â¯1371 pregnancies including spontaneous and medically-indicated PTBs). Pregnancies were classified as having clinical chorioamnionitis (with or without histologic chorioamnionitis), subclinical chorioamnionitis (histologic, but not clinical, chorioamnionitis), or no chorioamnionitis; pregnancies with histologic chorioamnionitis were further evaluated for fetal vasculitis. Relative risks for PTB, early and late PTB, and PTB⯱â¯premature rupture of membranes (PROM) were adjusted for maternal characteristics. RESULTS: Clinical (4.3%) and subclinical (24.5%) chorioamnionitis were not associated with PTB overall. In pregnancies without clinical or subclinical chorioamnionitis, the risk of PTB with PROM and early PTB was 2.2% and 8.6%, respectively. In comparison, clinical chorioamnionitis was associated with an increased risk of PTB with PROM (aRR: 3.42 (95%CI: 1.07, 10.98), whereas subclinical chorioamnionitis was associated with increased risk of PTB with PROM (aRR: 3.92 (95% CI: 2.15, 7.12)) and early PTB (aRR: 1.77 (95% CI: 1.18, 2.64)). Histologic chorioamnionitis with fetal vasculitis was associated with increased risk of PTB with PROM (aRR: 7.44 (95% CI: 3.68, 15.05)) and early PTB (aRR: 2.94 (95% CI: 1.78, 4.87)), whereas histologic chorioamnionitis without fetal vasculitis was associated with increased risk of PTB with PROM only (aRR: 2.64, 95% CI: 1.27, 5.50). CONCLUSIONS: Subclinical chorioamnionitis and histologic chorioamnionitis with fetal vasculitis were associated with early PTB and PTB with PROM but not with PTB overall, likely due to inclusion of indicated PTBs.
Assuntos
Corioamnionite/epidemiologia , Doenças Fetais/epidemiologia , Nascimento Prematuro/epidemiologia , Vasculite/epidemiologia , Adolescente , Adulto , Doenças Assintomáticas , Corioamnionite/patologia , Estudos de Coortes , Feminino , Ruptura Prematura de Membranas Fetais/epidemiologia , Ruptura Prematura de Membranas Fetais/etiologia , Feto/irrigação sanguínea , Feto/patologia , Humanos , Recém-Nascido , Trabalho de Parto Prematuro/epidemiologia , Trabalho de Parto Prematuro/etiologia , Gravidez , Nascimento Prematuro/etiologia , Fatores de Risco , Vasculite/complicações , Vasculite/congênito , Vasculite/patologia , Adulto JovemRESUMO
OBJECTIVE: Adverse effects of obesity have been linked to inflammation in various tissues, but studies on placental inflammation and obesity have demonstrated conflicting findings. We sought to investigate the influence of pregravid obesity and fetal sex on placental histopathology while controlling for diabetes and hypertension. METHODS: Placental histopathology focusing on inflammatory markers of a cohort of normal weight (BMI = 20-24.9) and obese (BMI ≥ 30) patients was characterized. Demographic, obstetric and neonatal variables were assessed. RESULTS: 192 normal and 231 obese women were included. Placental characteristics associated with obesity and fetal sex independent of diabetes and hypertension were placental disc weight >90(th) percentile, decreased placental efficiency, chronic villitis (CV), fetal thrombosis, and normoblastemia. Additionally, female fetuses of obese mothers had higher rates of CV and fetal thrombosis. Increasing BMI increased the risk of normoblastemia and CV. The final grade and extent of CV was significantly associated with obesity and BMI, but not fetal gender. Finally, CV was less common in large-for-gestation placentas. CONCLUSIONS: Maternal obesity results in placental overgrowth and fetal hypoxia as manifested by normoblastemia; it is also associated with an increased incidence of CV and fetal thrombosis, both more prevalent in female placentas. We have shown for the first time that the effect of maternal obesity on placental inflammation is independent of diabetes and hypertension, but significantly affected by fetal sex. Our data also point to the intriguing possibility that CV serves to normalize placental size, and potentially fetal growth, in the setting of maternal obesity.
Assuntos
Obesidade/patologia , Placenta/patologia , Complicações na Gravidez/patologia , Adulto , Peso ao Nascer/fisiologia , Índice de Massa Corporal , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Recém-Nascido , Inflamação/complicações , Inflamação/patologia , Masculino , Gravidez , Caracteres SexuaisRESUMO
INTRODUCTION: Early placental development depends on the correct balance of cytotrophoblast (CTB) proliferation and differentiation, into either syncytiotrophoblast (STB) involved in nutrient/gas exchange, or invasive extravillous trophoblast (EVT) involved in establishment of blood flow to the placenta. Metastasis associated protein-3 (MTA3) is a transcriptional co-repressor known to regulate cell migration. In addition, MTA3 is reportedly decreased in preeclampsia. We set out to investigate the role of MTA3 in human trophoblast differentiation. METHODS: We co-stained first and third trimester placental sections with antibodies to MTA3 and other trophoblast markers. We also evaluated MTA3 expression following in vitro differentiation of primary isolated CTB. In order to evaluate the role of MTA3 in trophoblast differentiation, we used lentiviral constructs to overexpress and knock down its expression. Trophoblast differentiation was assessed by a combination of marker expression and functional assays, including hCG ELISA and cell migration. RESULTS: MTA3 was abundantly expressed in CTB and proximal cell column EVT in the human placenta and decreased with further differentiation into STB and mature EVT. MTA3 knockdown in JEG3 resulted in a 2-3 fold decrease in STB markers, CGB and GCM1, as well as in hCG secretion. In terms of EVT differentiation, MTA3 knockdown led to a 1.5-2 fold increase in HLA-G and cell migration, but decreased the mature EVT marker ITGA1. DISCUSSION: Taken together, our data suggest a role for MTA3 in terminal trophoblast differentiation into both hCG-secreting STB and mature EVT.