Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 55(10): 1360-1371, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35467343

RESUMO

Over hundreds of millions of years, organisms have derived specific sets of traits in response to common selection pressures that serve as guideposts for optimal biological designs. A prime example is the evolution of toughened structures in disparate lineages within plants, invertebrates, and vertebrates. Extremely tough structures can function much like armor, battering rams, or reinforcements that enhance the ability of organisms to win competitions, find mates, acquire food, escape predation, and withstand high winds or turbulent flow. From an engineering perspective, biological solutions are intriguing because they must work in a multifunctional context. An organism rarely can be optimally designed for only one function or one environmental condition. Some of these natural systems have developed well-orchestrated strategies, exemplified in the biological tissues of numerous animal and plant species, to synthesize and construct materials from a limited selection of available starting materials. The resulting structures display multiscale architectures with incredible fidelity and often exhibit properties that are similar, and frequently superior, to mechanical properties exhibited by many engineered materials. These biological systems have accomplished this feat through the demonstrated ability to tune size, morphology, crystallinity, phase, and orientation of minerals under benign processing conditions (i.e., near-neutral pH, room temperature, etc.) by establishing controlled synthesis and hierarchical 3D assembly of nano- to microscaled building blocks. These systems utilize organic-inorganic interactions and carefully controlled microenvironments that enable kinetic control during the synthesis of inorganic structures. This controlled synthesis and assembly requires orchestration of mineral transport and nucleation. The underlying organic framework, often consisting of polysaccharides and polypeptides, in these composites is critical in the spatial and temporal regulation of these processes. In fact, the organic framework is used not only to provide transport networks for mineral precursors to nucleation sites but also to precisely guide the formation and phase development of minerals and significantly improve the mechanical performance of otherwise brittle materials.Over the past 15 years, we have focused on a few of these extreme performing organisms, (Wang , Adv. Funct. Mater. 2013, 23, 2908; Weaver , Science 2012, 336, 1275; Huang , Nat. Mater. 2020, 19, 1236; Rivera , Nature 2020, 586, 543) investigating not only their ultrastructural features and mechanical properties but in some cases, how these assembled structures are mineralized. In specific instances, comparative analyses of multiscale structures have pinpointed which design principles have arisen convergently; when more than one evolutionary path arrives at the same solution, we have a good indication that it is the best solution. This is required for survival under extreme conditions. Indeed, we have found that there are specific architectural features that provide an advantage toward survival by enabling the ability to feed effectively or to survive against predatory attacks. In this Account, we describe 3 specific design features, nanorods, helicoids, and nanoparticles, as well as the interfaces in fiber-reinforced biological composites. We not only highlight their roles in the specific organisms but also describe how controlled syntheses and hierarchical assembly using organic (i.e., often chitinous) scaffolds lead to these integrated macroscale structures. Beyond this, we provide insight into multifunctionality: how nature leverages these existing structures to potentially add an additional dimension toward their utility and describe their translation to biomimetic materials used for engineering applications.


Assuntos
Materiais Biomiméticos , Nanotubos , Animais , Materiais Biomiméticos/química , Quitina , Minerais , Peptídeos/química
2.
Biosci Biotechnol Biochem ; 85(5): 1275-1282, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33710298

RESUMO

Streptomyces incarnatus NRRL8089 produces the antiviral, antifungal, antiprotozoal nucleoside antibiotic sinefungin. To enhance sinefungin production, multiple mutations were introduced to the rpoB gene encoding RNA polymerase (RNAP) ß-subunit at the target residues, D447, S453, H457, and R460. Sparse regression analysis using elastic-net lasso-ridge penalties on previously reported H457X mutations identified a numeric parameter set, which suggested that H457R/Y/F may cause production enhancement. H457R/R460C mutation successfully enhanced the sinefungin production by 3-fold, while other groups of mutations, such as D447G/R460C or D447G/H457Y, made moderate or even negative effects. To identify why the rif cluster residues have diverse effects on sinefungin production, an RNAP/DNA/mRNA complex model was constructed by homology modeling and molecular dynamics simulation. The 4 residues were located near the mRNA strand. Density functional theory-based calculation suggested that D447, H457, and R460 are in direct contact with ribonucleotide, and partially positive charges are induced by negatively charged chain of mRNA.


Assuntos
Adenosina/análogos & derivados , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Mutação , Streptomyces/genética , Adenosina/biossíntese , Adenosina/química , Substituição de Aminoácidos , Antibacterianos/química , Antifúngicos/química , Antifúngicos/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Antiprotozoários/química , Antiprotozoários/metabolismo , Antivirais/química , Antivirais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA/química , DNA/genética , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Teoria da Densidade Funcional , Regulação Bacteriana da Expressão Gênica , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Streptomyces/enzimologia
3.
Plant Cell ; 27(1): 162-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25634988

RESUMO

Oleaginous photosynthetic organisms such as microalgae are promising sources for biofuel production through the generation of carbon-neutral sustainable energy. However, the metabolic mechanisms driving high-rate lipid production in these oleaginous organisms remain unclear, thus impeding efforts to improve productivity through genetic modifications. We analyzed the genome and transcriptome of the oleaginous diatom Fistulifera solaris JPCC DA0580. Next-generation sequencing technology provided evidence of an allodiploid genome structure, suggesting unorthodox molecular evolutionary and genetic regulatory systems for reinforcing metabolic efficiencies. Although major metabolic pathways were shared with nonoleaginous diatoms, transcriptome analysis revealed unique expression patterns, such as concomitant upregulation of fatty acid/triacylglycerol biosynthesis and fatty acid degradation (ß-oxidation) in concert with ATP production. This peculiar pattern of gene expression may account for the simultaneous growth and oil accumulation phenotype and may inspire novel biofuel production technology based on this oleaginous microalga.


Assuntos
Diatomáceas/genética , Ácidos Graxos/metabolismo , Genoma de Planta/genética , Transcriptoma/genética , Triglicerídeos/metabolismo
4.
J Virol ; 90(2): 1034-47, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537685

RESUMO

UNLABELLED: The HIV-1 Vif protein inactivates the cellular antiviral cytidine deaminase APOBEC3F (A3F) in virus-infected cells by specifically targeting it for proteasomal degradation. Several studies identified Vif sequence motifs involved in A3F interaction, whereas a Vif-binding A3F interface was proposed based on our analysis of highly similar APOBEC3C (A3C). However, the structural mechanism of specific Vif-A3F recognition is still poorly understood. Here we report structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Alanine-scanning analysis of Vif revealed that six residues located within the conserved Vif F1-, F2-, and F3-box motifs are essential for both A3C and A3F degradation, and an additional four residues are uniquely required for A3F degradation. Modeling of the Vif structure on an HIV-1 Vif crystal structure revealed that three discontinuous flexible loops of Vif F1-, F2-, and F3-box motifs sterically cluster to form a flexible A3F interaction interface, which represents hydrophobic and positively charged surfaces. We found that the basic Vif interface patch (R17, E171, and R173) involved in the interactions with A3C and A3F differs. Furthermore, our crystal structure determination and extensive mutational analysis of the A3F C-terminal domain demonstrated that the A3F interface includes a unique acidic stretch (L291, A292, R293, and E324) crucial for Vif interaction, suggesting additional electrostatic complementarity to the Vif interface compared with the A3C interface. Taken together, these findings provide structural insights into the A3F-Vif interaction mechanism, which will provide an important basis for development of novel anti-HIV-1 drugs using cellular cytidine deaminases. IMPORTANCE: HIV-1 Vif targets cellular antiviral APOBEC3F (A3F) enzyme for degradation. However, the details on the structural mechanism for specific A3F recognition remain unclear. This study reports structural features of interaction interfaces for both HIV-1 Vif and A3F molecules. Three discontinuous sequence motifs of Vif, F1, F2, and F3 boxes, assemble to form an A3F interaction interface. In addition, we determined a crystal structure of the wild-type A3F C-terminal domain responsible for the Vif interaction. These results demonstrated that both electrostatic and hydrophobic interactions are the key force driving Vif-A3F binding and that the Vif-A3F interfaces are larger than the Vif-A3C interfaces. These findings will allow us to determine the configurations of the Vif-A3F complex and to construct a structural model of the complex, which will provide an important basis for inhibitor development.


Assuntos
Citosina Desaminase/química , Citosina Desaminase/metabolismo , Produtos do Gene vif do Vírus da Imunodeficiência Humana/química , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Cristalografia por Raios X , Citidina Desaminase/química , Citidina Desaminase/metabolismo , Análise Mutacional de DNA , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteólise , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
5.
Biosci Biotechnol Biochem ; 80(10): 1970-2, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27405844

RESUMO

Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-(14)C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat for Sephs2-Sec60Cys were determined to be 26 µM and 0.352 min(-1), respectively.


Assuntos
Ensaios Enzimáticos/métodos , Fosfotransferases/metabolismo , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/metabolismo , Thermus thermophilus/enzimologia , Monofosfato de Adenosina/metabolismo , Humanos
6.
Biosci Biotechnol Biochem ; 80(3): 600-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26566138

RESUMO

DL-Penicillamine, a copper-specific metal chelator, remarkably suppressed the growth of Bacillus subtilis 168 when added to a synthetic medium under Cu(2+) limitation. DNA microarray and screening of 2,602 knockout mutants showed that the zosA gene was de-repressed in the presence of 0.1% dl-penicillamine, and that the zosA mutant was sensitive to dl-penicillamine medium. The zosA mutant delayed the growth under Cu-limitation even without the chelator, and the sensitivity to dl-penicillamine was reversed by induction using 0.3 mM IPTG and the Pspac promoter inserted directly upstream of the zosA gene. Furthermore, the zosA mutant showed elevated tolerance of excessive Cu(2+) but not of excessive Zn(2+) added to LB and synthetic media. Homology modeling of the ZosA protein suggested that the protein can fold itself into essential domains for constituting a metal transporting ATPase. Our study suggests that zosA is a candidate gene involved in copper uptake.


Assuntos
Bacillus subtilis/genética , Cobre/metabolismo , Genes Bacterianos , Bacillus subtilis/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos
7.
J Proteome Res ; 12(11): 5293-301, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23879348

RESUMO

For biodiesel production from microalgae, it is desirable to understand the entire triacylglycerol (TAG) metabolism. TAG accumulation occurs in oil bodies, and although oil body-associated proteins could play important roles in TAG metabolism, only a few microalgal species have been studied by a comprehensive analysis. Diatoms are microalgae that are promising producers of biodiesel, on which such proteomics analysis has not been conducted to date. Herein, we identified oil body-associated proteins in the oleaginous diatom Fistulifera sp. strain JPCC DA0580. The oil body fraction was separated by cell disruption with beads beating and subsequent ultracentrifugation. Contaminating factors could be removed by comparing proteins from the oil body and the soluble fractions. This novel strategy successfully revealed 15 proteins as oil body-associated protein candidates. Among them, two proteins, which were parts of proteins predicted to have transmembrane domains, were indeed confirmed to specifically localize to the oil bodies in this strain by observation of GFP fusion proteins. One (predicted to be a potassium channel) was also detected from the ER, suggesting that oil bodies might originate from the ER. By utilizing this novel subtraction method, we succeeded in identifying the oil body-associated proteins in the diatom for the first time.


Assuntos
Biocombustíveis/microbiologia , Diatomáceas/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/genética , Triglicerídeos/metabolismo , Fracionamento Celular , Cromatografia Líquida , Biologia Computacional , Diatomáceas/metabolismo , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Proteômica/métodos , Espectrometria de Massas em Tandem , Ultracentrifugação
8.
Mar Biotechnol (NY) ; 25(6): 1208-1219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38071657

RESUMO

Nitzschia is one of the largest genera of diatoms found in a range of aquatic environments, from freshwater to seawater. This genus contains evolutionarily and ecologically unique species, such as those that have lost photosynthetic capacity or those that live symbiotically in dinoflagellates. Several Nitzschia species have been used as indicators of water pollution. Recently, Nitzschia species have attracted considerable attention in the field of biotechnology. In this study, a transformation method for the marine pennate diatom Nitzschia sp. strain NIES-4635, isolated from the coastal Seto Inland Sea, was established. Plasmids containing the promoter/terminator of the fucoxanthin chlorophyll a/c binding protein gene (fcp, or Lhcf) derived from Nitzschia palea were constructed and introduced into cells by multi-pulse electroporation, resulting in 500 µg/mL nourseothricin-resistant transformants with transformation frequencies of up to 365 colonies per 108 cells. In addition, when transformation was performed using a new plasmid containing a promoter derived from a diatom-infecting virus upstream of the green fluorescent protein gene (gfp), 44% of the nourseothricin-resistant clones exhibited GFP fluorescence. The integration of the genes introduced into the genomes of the transformants was confirmed by Southern blotting. The Nitzschia transformation method established in this study will enable the transformation this species, thus allowing the functional analysis of genes from the genus Nitzschia, which are important species for environmental and biotechnological development.


Assuntos
Diatomáceas , Estreptotricinas , Diatomáceas/genética , Diatomáceas/metabolismo , Estreptotricinas/metabolismo , Clorofila A/metabolismo , Eletroporação/métodos , Plasmídeos/genética
9.
Proteomics ; 12(18): 2890-4, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22833255

RESUMO

The biomineralized radular teeth of chitons are known to consist of iron-based magnetic crystals, associated with the maximum hardness and stiffness of any biomineral. Based on our transmission electron microscopy analysis of partially mineralized teeth, we suggest that the organic matrix within the teeth controls the iron oxide nucleation. Thus, we used Nano-LC-MS to perform a proteomic analysis of the organic matrix in radular teeth of the chiton Cryptochiton stelleri in order to identify the proteins involved in the biomineralization process. Since the genome sequence of C. stelleri is not available, cross-species similarity searching and de novo peptide sequencing were used to screen the proteins. Our results indicate that several proteins were dominant in the mineralized part of the radular teeth, amongst which, myoglobin and a highly acidic peptide were identified as possibly involved in the biomineralization process.


Assuntos
Moluscos/química , Proteoma/análise , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Proteoma/isolamento & purificação , Proteômica , Dente/química , Dente/crescimento & desenvolvimento , Dente/ultraestrutura , Calcificação de Dente
10.
Appl Microbiol Biotechnol ; 95(4): 1043-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22113562

RESUMO

We propose a copper iodide (CuI)-doped nylon mesh prepared using polyiodide ions as a precursor toward anti-biofouling polymer textile. The CuI-doped nylon mesh was subjected to the prevention of biofouling in marine environments. The attachment of the marine organisms was markedly inhibited on the CuI-doped nylon mesh surface until 249 days. Scanning electron microscopy-energy dispersive X-ray analysis indicated that copper compounds were maintained in the nylon mesh after the field experiment, although copper content in the nylon mesh was reduced. Therefore, the copper ions slowly dissolved from nylon mesh will contribute to the long-term prevention of biofouling. Furthermore, electron spin resonance analysis revealed the generation of reactive oxygen species (ROS) from CuI-doped nylon mesh after the field experiment. One of the possibilities for toxic action of copper ions will be the direct effect of Cu+ -induced ROS on biofilm forming on nylon mesh surface. The proposed polymer textile can be applied to fishing and aquafarming nets, mooring rope for ship, or silt fence to restrict polluted water in marine environments.


Assuntos
Cobre , Iodetos , Espectroscopia de Ressonância de Spin Eletrônica , Biologia Marinha , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
11.
J Clin Virol ; 152: 105189, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35640401

RESUMO

BACKGROUND: Although the number of HIV-2-infected individuals is quite low in Japan, at least three groups of HIV-2 (A, B and CRF01_AB) have been detected thus far. In particular, CRF01_AB HIV-2 cases have been found only in limited areas, Cote d'Ivoire and Japan. Here, we demonstrate that Geenius HIV 1/2 Confirmatory Assay (Geenius, Bio-Rad Laboratories) is able to detect HIV-2 samples, including groups A, B and CRF01_AB, isolated in Japan. STUDY DESIGN: A total of 57 plasma samples, including three panels (Ⅰ: HIV-2-positive samples [n=9], Ⅱ: HIV-1 infection with HIV-2 antibody cross-reactivity samples [n=37], and Ⅲ: HIV negative with biological false-positive HIV-2 samples [n=11]) were tested by Geenius. RESULTS: Geenius determined Panel I to be "HIV-2 positive with/without HIV-1 cross-reactivity (n=4, respectively)", including HIV-2 group A and CRF01_AB. In the case with HIV-2 group B, all bands were detected, resulting in a Geenius interpretation of "HIV positive untypable". Geenius classified Panels II and III as "HIV-1 positive (n=37)" or "HIV negative (n=9)", "HIV indeterminate (n=1)" and "HIV-2 indeterminate (n=1)", suggesting 95.8% HIV-2 differentiation by Geenius. CONCLUSIONS: With Geenius, there were fewer false-positives for HIV-1/-2 negativity and fewer cross-reactions with HIV-2 among HIV-1-positive samples. Additionally, the assay could detect HIV-2 genetic group CRF01_AB. Geenius can be expected to be a useful diagnostic tool that is an alternative to conventional Western blotting.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Anticorpos Anti-HIV , HIV-1/genética , HIV-2 , Humanos , Japão , Sensibilidade e Especificidade
12.
Sci Rep ; 11(1): 960, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441754

RESUMO

In HIV-1-infected patients, antiretroviral therapy (ART) is a key factor that may impact commensal microbiota and cause the emergence of side effects. However, it is not fully understood how long-term ART regimens have diverse impacts on the microbial compositions over time. Here, we performed 16S ribosomal RNA gene sequencing of the fecal and salivary microbiomes in patients under different long-term ART. We found that ART, especially conventional nucleotide/nucleoside reverse transcriptase inhibitor (NRTI)-based ART, has remarkable impacts on fecal microbial diversity: decreased α-diversity and increased ß-diversity over time. In contrast, dynamic diversity changes in the salivary microbiome were not observed. Comparative analysis of bacterial genus compositions showed a propensity for Prevotella-enriched and Bacteroides-poor gut microbiotas in patients with ART over time. In addition, we observed a gradual reduction in Bacteroides but drastic increases in Succinivibrio and/or Megasphaera under conventional ART. These results suggest that ART, especially NRTI-based ART, has more suppressive impacts on microbiota composition and diversity in the gut than in the mouth, which potentially causes intestinal dysbiosis in patients. Therefore, NRTI-sparing ART, especially integrase strand transfer inhibitor (INSTI)- and/or non-nucleotide reverse transcriptase inhibitor (NNRTI)-containing regimens, might alleviate the burden of intestinal dysbiosis in HIV-1-infected patients under long-term ART.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/microbiologia , Boca/microbiologia , Adulto , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Disbiose/virologia , Feminino , Infecções por HIV/virologia , Soropositividade para HIV/tratamento farmacológico , Soropositividade para HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Transcriptase Reversa/uso terapêutico
13.
Mar Biotechnol (NY) ; 22(4): 551-563, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32488507

RESUMO

Silica cell walls of diatoms have attracted attention as a source of nanostructured functional materials and have immense potential for a variety of applications. Previous studies of silica cell wall formation have identified numerous involved proteins, but most of these proteins are species-specific and are not conserved among diatoms. However, because the basic process of diatom cell wall formation is common to all diatom species, ubiquitous proteins and molecules will reveal the mechanisms of cell wall formation. In this study, we assembled de novo transcriptomes of three diatom species, Nitzschia palea, Achnanthes kuwaitensis, and Pseudoleyanella lunata, and compared protein-coding genes of five genome-sequenced diatom species. These analyses revealed a number of diatom-specific genes that encode putative endoplasmic reticulum-targeting proteins. Significant numbers of these proteins showed homology to silicanin-1, which is a conserved diatom protein that reportedly contributes to cell wall formation. These proteins also included a previously unrecognized SET domain protein methyltransferase family that may regulate functions of cell wall formation-related proteins and long-chain polyamines. Proteomic analysis of cell wall-associated proteins in N. palea identified a protein that is also encoded by one of the diatom-specific genes. Expression analysis showed that candidate genes were upregulated in response to silicon, suggesting that these genes play roles in silica cell wall formation. These candidate genes can facilitate further investigations of silica cell wall formation in diatoms.


Assuntos
Parede Celular/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Transcriptoma , Parede Celular/genética , Domínios PR-SET , Proteínas Metiltransferases/metabolismo , Dióxido de Silício/química
14.
J Mech Behav Biomed Mater ; 111: 103991, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32823075

RESUMO

Chitons are herbivorous invertebrates that use rows of ultrahard magnetite-based teeth connected to a flexible belt (radula) to rasp away algal deposits growing on and within rocky outcrops along coastlines around the world. Each tooth is attached to the radula by an organic structure (stylus) that provides mechanical support during feeding. However, the underlying structures within the stylus, and their subsequent function within the chiton have yet to be investigated. Here, we investigate the macrostructural architecture, the regional material and elemental distribution and subsequent nano-mechanical properties of the stylus from the Northern Pacific dwelling Cryptochiton stelleri. Using a combination of µ-CT imaging, optical and electron microscopy, as well as elemental analysis, we reveal that the stylus is a highly contoured tube, mainly composed of alpha-chitin fibers, with a complex density distribution. Nanoindentation reveals regiospecific and graded mechanical properties that can be correlated with both the elemental composition and material distribution. Finite element modeling shows that the unique macroscale architecture, material distribution and elemental gradients have been optimized to preserve the structural stability of this flexible, yet robust functionally-graded fiber-reinforced composite tube, providing effective function during rasping. Understanding these complex fiber-based structures offers promising blueprints for lightweight, multifunctional and integrated materials.


Assuntos
Poliplacóforos , Dente , Animais , Óxido Ferroso-Férrico , Microscopia Eletrônica
15.
Proteomics ; 9(12): 3341-52, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19579222

RESUMO

Recent molecular studies on magnetotactic bacteria have identified a number of proteins associated with bacterial magnetites (magnetosomes) and elucidated their importance in magnetite biomineralisation. However, these analyses were limited to magnetotactic bacterial strains belonging to the alpha-subclass of Proteobacteria. We performed a proteomic analysis of magnetosome membrane proteins in Desulfovibrio magneticus strain RS-1, which is phylogenetically classified as a member of the delta-Proteobacteria. In the analysis, the identified proteins were classified based on their putative functions and compared with the proteins from the other magnetotactic bacteria, Magnetospirillum magneticum AMB-1 and M. gryphiswaldense MSR-1. Three magnetosome-specific proteins, MamA (Mms24), MamK, and MamM, were identified in strains RS-1, AMB-1, and MSR-1. Furthermore, genes encoding ten magnetosome membrane proteins, including novel proteins, were assigned to a putative magnetosome island that contains subsets of genes essential for magnetosome formation. The collagen-like protein and putative iron-binding proteins, which are considered to play key roles in magnetite crystal formation, were identified as specific proteins in strain RS-1. Furthermore, genes encoding two homologous proteins of Magnetococcus MC-1 were assigned to a cryptic plasmid of strain RS-1. The newly identified magnetosome membrane proteins might contribute to the formation of the unique irregular, bullet-shaped crystals in this microorganism.


Assuntos
Proteínas de Bactérias/análise , Desulfovibrio/química , Magnetossomos/química , Proteínas de Membrana/análise , Proteoma/análise , Alphaproteobacteria/química , Proteínas de Bactérias/genética , Cromatografia Líquida , Desulfovibrio/genética , Magnetossomos/genética , Magnetospirillum/química , Proteínas de Membrana/genética , Proteoma/genética , Espectrometria de Massas em Tandem
16.
J Antibiot (Tokyo) ; 72(12): 981-985, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31534199

RESUMO

Feline herpesvirus type 1 (FHV-1) causes a potentially fatal disease in cats. Through the use of virus inhibition and cytotoxicity assays, sinefungin, a nucleoside antibiotic, was assessed for its potential to inhibit the growth of FHV-1. Sinefungin inhibited in vitro growth of FHV-1 most significantly over other animal viruses, such as feline infectious peritonitis virus, equine herpesvirus, pseudorabies virus and feline calicivirus. Our results revealed that sinefungin specifically suppressed the replication of FHV-1 after its adsorption to the host feline kidney cells in a dose-dependent manner without obvious cytotoxicity to the host cells. This antibiotic can potentially offer a highly effective treatment for animals infected with FHV-1, providing alternative medication to currently available antiviral therapies.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Varicellovirus/efeitos dos fármacos , Adenosina/farmacologia , Adenosina/toxicidade , Animais , Antivirais/toxicidade , Calicivirus Felino/efeitos dos fármacos , Doenças do Gato/tratamento farmacológico , Gatos , Linhagem Celular , Coronavirus Felino/efeitos dos fármacos , Relação Dose-Resposta a Droga , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/veterinária , Herpesvirus Equídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/efeitos dos fármacos , Cavalos , Rim/citologia , Rim/virologia , Testes de Toxicidade
17.
Sci Rep ; 9(1): 856, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696920

RESUMO

Many species of chiton are known to deposit magnetite (Fe3O4) within the cusps of their heavily mineralized and ultrahard radular teeth. Recently, much attention has been paid to the ultrastructural design and superior mechanical properties of these radular teeth, providing a promising model for the development of novel abrasion resistant materials. Here, we constructed de novo assembled transcripts from the radular tissue of C. stelleri that were used for transcriptome and proteome analysis. Transcriptomic analysis revealed that the top 20 most highly expressed transcripts in the non-mineralized teeth region include the transcripts encoding ferritin, while those in the mineralized teeth region contain a high proportion of mitochondrial respiratory chain proteins. Proteomic analysis identified 22 proteins that were specifically expressed in the mineralized cusp. These specific proteins include a novel protein that we term radular teeth matrix protein1 (RTMP1), globins, peroxidasins, antioxidant enzymes and a ferroxidase protein. This study reports the first de novo transcriptome assembly from C. stelleri, providing a broad overview of radular teeth mineralization. This new transcriptomic resource and the proteomic profiles of mineralized cusp are valuable for further investigation of the molecular mechanisms of radular teeth mineralization in chitons.


Assuntos
Óxido Ferroso-Férrico/metabolismo , Poliplacóforos/fisiologia , Dente/fisiologia , Animais , Biomineralização , Calcificação Fisiológica , Ferritinas/genética , Ferritinas/metabolismo , Globinas/metabolismo , Proteômica , Calcificação de Dente , Transcriptoma
18.
Biochim Biophys Acta Proteins Proteom ; 1867(3): 194-201, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30576741

RESUMO

Oxidative folding of extracellular proteins is pivotal for the biogenesis of bacterial virulence factors. Escherichia coli DsbA catalyzes disulfide bond formation in extracellular proteins and in multicomponent architectures on the cell surface. The present study assessed the significance of the redox properties of DsbA by exploiting the plaque-forming ability of bacteriophage M13, which specifically recognizes F-pili during infection of the host cell. A library of mutant dsbA genes was constructed by randomizing the dipeptide XX sequence in the active-site redox motif CXXC and then screened for mutants that altered plaque yield and appearance. In total, 24 dsbA mutant alleles produced substantially different degrees of complementation, and one mutant dsbA gene that encodes a CDIC sequence produced over 40-fold more clear plaques than wild type dsbA. The redox potential of purified DsbA [CDIC] was -172 mV, representing a less-oxidizing catalysis than the wild type DsbA (-122 mV), but one that is closer to yeast protein disulfide isomerase (-175 mV). DsbA [CDIC] exhibited a greater ability to refold fully denatured glutathionylated ribonuclease A than the wild type enzyme and a DsbA [CRIC] mutant, which has the same redox potential of -172 mV. Homology modeling and molecular dynamics simulation suggest that the CDIC mutant may have an enlarged substrate-binding cleft near the redox center, which confers kinetic advantages when acting on protein substrates.


Assuntos
Proteínas de Escherichia coli/química , Isomerases de Dissulfetos de Proteínas/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutação , Oxirredução , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína
19.
J R Soc Interface ; 5(26): 977-99, 2008 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-18559314

RESUMO

Magnetic particles offer high technological potential since they can be conveniently collected with an external magnetic field. Magnetotactic bacteria synthesize bacterial magnetic particles (BacMPs) with well-controlled size and morphology. BacMPs are individually covered with thin organic membrane, which confers high and even dispersion in aqueous solutions compared with artificial magnetites, making them ideal biotechnological materials. Recent molecular studies including genome sequence, mutagenesis, gene expression and proteome analyses indicated a number of genes and proteins which play important roles for BacMP biomineralization. Some of the genes and proteins identified from these studies have allowed us to express functional proteins efficiently onto BacMPs, through genetic engineering, permitting the preservation of the protein activity, leading to a simple preparation of functional protein-magnetic particle complexes. They were applicable to high-sensitivity immunoassay, drug screening and cell separation. Furthermore, fully automated single nucleotide polymorphism discrimination and DNA recovery systems have been developed to use these functionalized BacMPs. The nano-sized fine magnetic particles offer vast potential in new nano-techniques.


Assuntos
Biotecnologia/métodos , Desulfovibrio/metabolismo , Óxido Ferroso-Férrico/metabolismo , Magnetospirillum/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Desulfovibrio/genética , Óxido Ferroso-Férrico/química , Magnetospirillum/genética , Dados de Sequência Molecular , Propriedades de Superfície
20.
Sci Rep ; 8(1): 6956, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725107

RESUMO

Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4+ T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.


Assuntos
Síndromes de Imunodeficiência/genética , Síndrome de Job/genética , Linfopenia/genética , Mutação , TYK2 Quinase/deficiência , Adolescente , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/isolamento & purificação , Heterozigoto , Humanos , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/patologia , Síndrome de Job/complicações , Síndrome de Job/patologia , Linfoma de Células B/complicações , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfopenia/complicações , Linfopenia/patologia , Masculino , Doenças da Imunodeficiência Primária , Irmãos , Linfócitos T/patologia , TYK2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA