Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Extremophiles ; 23(1): 35-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30284641

RESUMO

Genotypic and morphological diversity of cyanobacteria in the Rupite hot spring (Bulgaria) was investigated by means of optical microscopy, cultivation, single-cell PCR, and 16S rRNA gene amplicon sequencing. Altogether, 34 sites were investigated along the 71-39 °C temperature gradient. Analysis of samples from eight representative sites shown that Illumina, optical microscopy, and Roche 454 identified 72, 45 and 19% respective occurrences of all cumulatively present taxa. Optical microscopy failed to detect species of minor occurrence; whereas, amplicon sequencing technologies suffered from failed primer annealing and the presence of species with extensive extracellular polysaccharides production. Amplicon sequencing of the 16S rRNA gene V5-V6 region performed by Illumina identified the cyanobacteria most reliably to the generic level. Nevertheless, only the combined use of optical microscopy, cultivation and sequencing methods allowed for reliable estimate of the cyanobacterial diversity. Here, we show that Rupite hot-spring system hosts one of the richest cyanobacterial flora reported from a single site above 50 °C. Chlorogloeopsis sp. was the most abundant at the highest temperature (68 °C), followed by Leptolyngbya boryana, Thermoleptolyngbya albertanoae, Synechococcus bigranulatus, Oculatella sp., and Desertifilum sp. thriving above 60 °C, while Leptolyngbya geysericola, Geitlerinema splendidum, and Cyanobacterium aponinum were found above 50 °C.


Assuntos
Cianobactérias/genética , Fontes Termais/microbiologia , Microbiota , Cianobactérias/classificação , Cianobactérias/citologia , Cianobactérias/isolamento & purificação , RNA Ribossômico 16S/genética
2.
Sci Rep ; 11(1): 20990, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697365

RESUMO

Aquaculture threatens natural resources by fishing down the sea to supply fishmeal. Alternative protein sources in aquafeeds can provide a solution, particularly those that are waste from other operations and thereby reduce feed production costs. Toward this goal, we examined the waste biomass of marine periphyton from biofilters of an integrated multi-trophic aquaculture (IMTA) system as a replacement for fishmeal in diets of gilthead seabream (Sparus aurata). Four isoproteic (41%) and isolipidic (16.7%) aquafeeds were formulated with increased content of periphyton and a corresponding decrease in fishmeal from 20 to 15, 10, or 0%. The growth and biochemical content of seabream fingerlings (initial body weight 10 g) were examined over 132 days. Replacing 50% of fishmeal by waste periphyton improved feed conversion ratio (1.2 vs. 1.35 in the control diet) without harming fish growth. The complete replacement of fishmeal with periphyton resulted in 15% slower growth but significantly higher protein content in the fish flesh (59 vs. 52% in the control diet). Halving fishmeal content reduced feed cost by US$ 0.13 kg-1 feed and saved 30% in the cost of conversion of feed to fish biomass (US$ 0.58 kg-1 produced fish vs. $0.83 in the control diet). Finally, the total replacement of fishmeal by waste periphyton in the diet reduced the fish in-fish out ratio to below 1 (0.5-0.9) as compared to 1.36 in the control diet. Replacing fishmeal with on-farm produced periphyton minimizes aquaculture footprint through the removal of excess nutrients in effluents and the use of waste biomass to reduce the 'fish in' content in aquafeeds and fish production costs. The present study demonstrates the great practical potential of this dual use of marine periphyton in enhancing the circular economy concept in sustainable fish production.


Assuntos
Ração Animal , Produtos Pesqueiros , Perifíton , Dourada , Animais , Aquicultura , Biomassa , Produtos Pesqueiros/análise , Produtos Pesqueiros/economia , Produtos Pesqueiros/provisão & distribuição , Dourada/crescimento & desenvolvimento
3.
Foods ; 10(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34829059

RESUMO

Sarcocornia A. J. Scott is a halophytic edible succulent plant belonging to the Amaranthaceae family. To date, the genus includes 28 species distributed worldwide in saline environments, usually salt marshes. Sarcocornia (Scott) is similar to Salicornia (L.), which has a recognized commercial value in morphological and taxonomical traits. Species of both genera are commonly named samphire or glassworts in Europe, and their fleshy shoots are commercialized under their traditional names. Due to their nutritional, organoleptic and medicinal properties, Sarcocornia species have a high economic potential in various biotechnology sectors. Being highly tolerant to salt, they can be cultivated in saline conditions, and dissimilar to Salicornia, they are perennial, i.e., they can be harvested year-round. Therefore, Sarcocornia species are considered promising gourmet vegetables to be explored in the context of climate change, soil and water salinization and eco-sustainability. We hereby put together and reviewed the most relevant information on Sarcocornia taxonomy, morphology, nutritional and pharmacological properties, uses in ethnomedicine, potential applications in biotechnology, and propagation strategies.

5.
Environ Sci Technol ; 39(6): 1802-10, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15819240

RESUMO

In the present work we describe a comprehensive analysis of sulfide oxidation in a fluidized bed reactor (FBR) from an environmentally sustainable, zero-discharge mariculture system. The FBR received oxygen-depleted effluent from a digestion basin (DB) that is responsible for gasification of organic matter and nitrogen. The FBR is a crucial component in this recirculating system because it safeguards the fish from the toxic sulfide produced in the DB. Microscale sulfide oxidation potential and bacterial community composition within FBR biofilms were correlated to biofilter performance by integrating bulk chemical, microsensor (O2, pH, and H2S), and molecular microbial community analyses. The FBR consistently oxidized sulfide during two years of continuous operation, with an estimated average sulfide removal rate of 1.3 g of sulfide-S L(FBR)(-1) d(-1). Maximum sulfide oxidation rates within the FBR biofilms were 0.36 and 0.21 mg of sulfide-S cm(-3) h(-1) in the oxic and anoxic layers, respectively, indicating that both oxygen and nitrate serve as electron acceptors for sulfide oxidation. The estimated anoxic sulfide removal rate, as extrapolated from bench scale, autotrophic, nitrate-amended experiments, was 0.7 g of sulfide-S L(FBR)(-1) d(-1), which is approximately 50% of the total estimated sulfide removal in the FBR. Community composition analyses using denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA gene fragments from FBR samples taken at six-month intervals revealed several sequences that were closely affiliated with sulfide-oxidizing bacteria. These included the denitrifying, sulfide-oxidizing bacteria Thiomicrospira denitrificans, members of the filamentous Thiothrix genus, and sulfide-oxidizing symbionts from the Gammaproteobacteria. In addition, marine Alphaproteobacteria and Bacteroidetes species were present in all of the DGGE profiles examined. DGGE analyses showed significant shifts in the bacterial community composition between profiles over two years of sampling, indicating the presence of a diverse and dynamic microbial community within the functionally stable FBR. The FBR's combined capacity for both oxic and anoxic sulfide oxidation, as indicated by bulk chemical, microsensor, and molecular microbial analyses, gives it significant functional elasticity, which is crucial for proper performance in the dynamic environment of this mariculture system.


Assuntos
Aquicultura , Reatores Biológicos , Sulfetos/metabolismo , Gerenciamento de Resíduos/métodos , Bactérias/crescimento & desenvolvimento , Biofilmes , Sulfeto de Hidrogênio/análise , Concentração de Íons de Hidrogênio , Oxidantes Fotoquímicos/análise , Oxirredução , Oxigênio , Ozônio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA