Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Platelets ; 29(6): 602-609, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28960117

RESUMO

Involvement of signal transducer and activator of transcription 3 (STAT3) in inflammation is well known. Recently, a role for STAT3 in platelet activation and platelet production has been suggested. Platelets exhibit important immune functions and engagement of STAT3 in platelet physiology may link inflammation and hemostasis. This study investigated the effects of STAT3 loss-of-function mutations and single nucleotide polymorphisms (SNPs) in STAT3 on glycoprotein VI (GPVI)-mediated platelet activation and platelet numbers in humans. Two cohorts were studied. The first cohort concerned patients with STAT3 loss-of-function mutations. Platelet numbers were investigated in eight patients and GPVI-mediated platelet activation was functionally tested in four patients. Additional experiments were performed to investigate underlying mechanisms. The second cohort concerned 334 healthy volunteers and investigated the consequences of SNPs in STAT3 on GPVI-mediated platelet activation and platelet numbers. Platelet activation was lower in STAT3 loss-of-function patients at baseline and after stimulation of the GPVI receptor, reflected by decreased P-selectin expression. This was independent of gene transcription. Blockade of the adenosine di-phosphate (ADP) pathway resulted in a further decrease of P-selectin expression, particularly in STAT3 loss-of-function patients. In contrast, the SNPs in STAT3 did not influence GPVI-mediated platelet activation. Also, platelet numbers were not affected by STAT3 loss-of-function mutations, nor was there an association with the SNPs. In conclusion, STAT3 signaling does not seem to play a major role in thrombopoiesis. We confirm that STAT3 is involved in GPVI-mediated platelet activation in humans, independent of gene transcription. GPVI-mediated platelet activation is highly dependent on secondary ADP release. Our findings suggest that STAT3 modulation may affect inflammation, hemostasis, and their interaction.


Assuntos
Plaquetas/metabolismo , Fator de Transcrição STAT3/metabolismo , Hemostasia , Humanos , Mutação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA