Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Digit Discov ; 3(5): 896-907, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756223

RESUMO

Connecting chemical structural representations with meaningful categories and semantic annotations representing existing knowledge enables data-driven digital discovery from chemistry data. Ontologies are semantic annotation resources that provide definitions and a classification hierarchy for a domain. They are widely used throughout the life sciences. ChEBI is a large-scale ontology for the domain of biologically interesting chemistry that connects representations of chemical structures with meaningful chemical and biological categories. Classifying novel molecular structures into ontologies such as ChEBI has been a longstanding objective for data scientific methods, but the approaches that have been developed to date are limited in several ways: they are not able to expand as the ontology expands without manual intervention, and they are not able to learn from continuously expanding data. We have developed an approach for automated classification of chemicals in the ChEBI ontology based on a neuro-symbolic AI technique that harnesses the ontology itself to create the learning system. We provide this system as a publicly available tool, Chebifier, and as an API, ChEB-AI. We here evaluate our approach and show how it constitutes an advance towards a continuously learning semantic system for chemical knowledge discovery.

2.
Bioinformatics ; 28(9): 1262-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22402613

RESUMO

MOTIVATION: Advancing our understanding of how nervous systems work will require the ability to store and annotate 3D anatomical datasets, recording morphology, partonomy and connectivity at multiple levels of granularity from subcellular to gross anatomy. It will also require the ability to integrate this data with other data-types including functional, genetic and electrophysiological data. The web ontology language OWL2 provides the means to solve many of these problems. Using it, one can rigorously define and relate classes of anatomical structure using multiple criteria. The resulting classes can be used to annotate datasets recording, for example, gene expression or electrophysiology. Reasoning software can be used to automate classification and error checking and to construct and answer sophisticated combinatorial queries. But for such queries to give consistent and biologically meaningful results, it is important that both classes and the terms (relations) used to relate them are carefully defined. RESULTS: We formally define a set of relations for recording the spatial and connectivity relationships of neuron classes and brain regions in a broad range of species, from vertebrates to arthropods. We illustrate the utility of our approach via its application in the ontology that drives the Virtual Fly Brain web resource. AVAILABILITY AND IMPLEMENTATION: The relations we define are available from http://purl.obolibrary.org/obo/ro.owl. They are used in the Drosophila anatomy ontology (http://purl.obolibrary.org/obo/fbbt/2011-09-06/), which drives the web resource http://www.virtualflybrain.org


Assuntos
Sistema Nervoso/anatomia & histologia , Neuroanatomia/métodos , Software , Vocabulário Controlado , Animais , Antenas de Artrópodes/anatomia & histologia , Encéfalo/anatomia & histologia , Drosophila/anatomia & histologia , Internet , Neurônios/classificação , Neurônios/citologia
3.
J Cheminform ; 13(1): 23, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726837

RESUMO

Chemical data is increasingly openly available in databases such as PubChem, which contains approximately 110 million compound entries as of February 2021. With the availability of data at such scale, the burden has shifted to organisation, analysis and interpretation. Chemical ontologies provide structured classifications of chemical entities that can be used for navigation and filtering of the large chemical space. ChEBI is a prominent example of a chemical ontology, widely used in life science contexts. However, ChEBI is manually maintained and as such cannot easily scale to the full scope of public chemical data. There is a need for tools that are able to automatically classify chemical data into chemical ontologies, which can be framed as a hierarchical multi-class classification problem. In this paper we evaluate machine learning approaches for this task, comparing different learning frameworks including logistic regression, decision trees and long short-term memory artificial neural networks, and different encoding approaches for the chemical structures, including cheminformatics fingerprints and character-based encoding from chemical line notation representations. We find that classical learning approaches such as logistic regression perform well with sets of relatively specific, disjoint chemical classes, while the neural network is able to handle larger sets of overlapping classes but needs more examples per class to learn from, and is not able to make a class prediction for every molecule. Future work will explore hybrid and ensemble approaches, as well as alternative network architectures including neuro-symbolic approaches.

4.
Genome Biol ; 6(5): R46, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15892874

RESUMO

To enhance the treatment of relations in biomedical ontologies we advance a methodology for providing consistent and unambiguous formal definitions of the relational expressions used in such ontologies in a way designed to assist developers and users in avoiding errors in coding and annotation. The resulting Relation Ontology can promote interoperability of ontologies and support new types of automated reasoning about the spatial and temporal dimensions of biological and medical phenomena.


Assuntos
Biologia Computacional/métodos , Terminologia como Assunto , Vocabulário Controlado , Pesquisa Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA