Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(6): 743-754, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38415301

RESUMO

Animal space use and spatial overlap can have important consequences for population-level processes such as social interactions and pathogen transmission. Identifying how environmental variability and inter-individual variation affect spatial patterns and in turn influence interactions in animal populations is a priority for the study of animal behaviour and disease ecology. Environmental food availability and macroparasite infection are common drivers of variation, but there are few experimental studies investigating how they affect spatial patterns of wildlife. Bank voles (Clethrionomys glareolus) are a tractable study system to investigate spatial patterns of wildlife and are amenable to experimental manipulations. We conducted a replicated, factorial field experiment in which we provided supplementary food and removed helminths in vole populations in natural forest habitat and monitored vole space use and spatial overlap using capture-mark-recapture methods. Using network analysis, we quantified vole space use and spatial overlap. We compared the effects of food supplementation and helminth removal and investigated the impacts of season, sex and reproductive status on space use and spatial overlap. We found that food supplementation decreased vole space use while helminth removal increased space use. Space use also varied by sex, reproductive status and season. Spatial overlap was similar between treatments despite up to threefold differences in population size. By quantifying the spatial effects of food availability and macroparasite infection on wildlife populations, we demonstrate the potential for space use and population density to trade-off and maintain consistent spatial overlap in wildlife populations. This has important implications for spatial processes in wildlife including pathogen transmission.


Assuntos
Arvicolinae , Animais , Arvicolinae/fisiologia , Feminino , Masculino , Estações do Ano , Helmintíase Animal/parasitologia , Helmintíase Animal/epidemiologia , Doenças dos Roedores/parasitologia , Helmintos/fisiologia
2.
Environ Sci Technol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031616

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), released from petrogenic, pyrogenic or diagenetic sources (degradation of wood materials), are of global concern due to their adverse effects, and potential for long-range transport. While dissolved PAHs have been frequently reported in the literature, there has been no consistent approach of sampling across water bodies. Passive samplers from the AQUA/GAPS-MONET initiative were deployed at 46 sites (28 marine and 18 freshwater), and analyzed for 28 PAHs and six polycyclic musks (PCMs) centrally. Freely dissolved PAH concentrations were dominated by phenanthrene (mean concentration 1500 pg L-1; median 530 pg L-1) and other low molecular weight compounds. Greatest concentrations of phenanthrene, fluoranthene, and pyrene were typically from the same sites, mostly in Europe and North America. Of the PCMs, only galaxolide (72% of samples) and tonalide (61%) were regularly detected, and were significantly cross-correlated. Benchmarking of PAHs relative to penta- and hexachlorobenzene confirmed that the most remote sites (Arctic, Antarctic, and mountain lakes) displayed below average PAH concentrations. Concentrations of 11 of 28 PAHs, galaxolide and tonalide were positively correlated (P < 0.05) with population density within a radius of 5 km of the sampling site. Characteristic PAH ratios gave conflicting results, likely reflecting multiple PAH sources and postemission changes.

3.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294896

RESUMO

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análise , Monitoramento Ambiental/métodos , Hexaclorobenzeno/análise , Água Doce , Poluentes Atmosféricos/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise
4.
New Phytol ; 231(5): 1798-1813, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33993520

RESUMO

Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.


Assuntos
Secas , Árvores , Florestas , Folhas de Planta , Água , Abastecimento de Água , Xilema
5.
Emerg Infect Dis ; 26(8): 1954-1956, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32687045

RESUMO

We detected Heartland virus (HRTV) in lone star nymphs collected in 2018 in northern Alabama, USA. Real-time reverse transcription PCR selective for the small segment of the HRTV genome and confirmatory sequencing of positive samples showed high identity with HRTV strains sequenced from Tennessee and Missouri.


Assuntos
Ixodidae , Phlebovirus , Alabama/epidemiologia , Amblyomma , Animais , Missouri/epidemiologia , Tennessee
6.
Exp Appl Acarol ; 79(3-4): 433-446, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31677026

RESUMO

Drag sampling and flagging are two of the most effective and widely applied techniques to monitor tick populations. Despite the importance of this sampling strategy, there is a lack of standardized protocols for the construction of an inexpensive tick drag/flag. To this end, we provide a step-by-step protocol that details the construction of a tick drag/flag. We provide evidence of efficacy by comparing results obtained over 3-months at 108 locations within the William B. Bankhead National Forest, Alabama, USA. Overall, our drag/flag sampling approach yielded 1127 larvae, 460 nymphs, and 53 adults for a total of 1640 ticks representing three species. We detected significant patterns in Amblyomma americanum abundance for nymphs and adults with greater counts in June (ß = 0.91 ± 0.36, 95% CI 0.55-1.27; ß = 2.44 ± 0.63, 95% CI 1.81-3.07, respectively) and July (ß = 0.73 ± 0.36, 95% CI 0.37-1.09; ß = 1.65 ± 0.66, 95% CI 0.99-2.31, respectively) as compared to August. We also detected a significant difference in tick captures by tick drag/flag fabric type with greater captures when muslin was used as compared to flannel (ß = 1.07 ± 0.06, 95% CI 1.01-1.13). Our goal is to provide instructions to assemble a highly effective tick drag/flag using minimal supplies. Evaluation and improvements of sampling techniques is essential to understand impacts of landscape management and larger stressors, such as climate change on tick populations but also for enhancing detection of invasive non-native species.


Assuntos
Monitoramento Ambiental/métodos , Ixodidae , Alabama , Animais , Larva , Ninfa
7.
New Phytol ; 213(2): 584-596, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27612306

RESUMO

The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology.


Assuntos
Mudança Climática , Chuva , Árvores/fisiologia , Água/fisiologia , Deutério/metabolismo , Marcação por Isótopo , Modelos Teóricos , Isótopos de Oxigênio/metabolismo , Estações do Ano , Solo/química , Especificidade da Espécie
8.
Arch Environ Contam Toxicol ; 73(2): 230-239, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28534067

RESUMO

Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Plásticos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Japão , Polietileno/análise , Polímeros/análise , Polipropilenos/análise , África do Sul , Tailândia
9.
Sci Total Environ ; : 174800, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009155

RESUMO

The occurrence of 58 pharmaceutically active compounds (PhACs) in surface water at 28 coastal and five river sites, and in two stormwater flows in Cape Town, South Africa, was investigated in winter and summer. After accounting for quality assurance and control data, 33 PhACs were considered in detail. In winter, 25 PhACs were found at one or more sites and 27 in summer. Salicylic acid was the most widespread PhAC in each season. At least one PhAC was found at each site in each survey. The largest number found at a site was 22 at Lifebox23 Beach in winter and 23 at Macassar Beach and in the Black and Diep Rivers in summer. These sites are strongly directly or indirectly affected by wastewater treatment plant discharges. The range in ΣPhAC concentrations was 41 ng L-1 to 9.3 µg L-1 in winter and 109 ng L-1 to 18.9 µg L-1 in summer. The hazard posed by PhACs was estimated using Predicted No Effect Concentrations (PNEC) from several sources. Hazard Quotients (HQs) for numerous PhACs were >1, and for several even >10, including azithromycin, cimetidine, clarithromycin, erythromycin, and ibuprofen. The highest hazards were at coastal sites strongly indirectly affected by wastewater treatment plant discharges. Azithromycin, trimethoprim, and sulfamethoxazole at some sites may have promoted antibiotic resistance in bacteria, while irbesartan at some sites might have posed a hazard to fish according to the fish plasma model. The concentrations of several PhACs at some coastal sites are higher than concentrations reported in estuarine, coastal, and marine waters in other parts of the world.

10.
Environ Sci Technol ; 47(17): 9643-50, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23899189

RESUMO

Brominated flame-retardant (BFR) additives are present in many polymeric consumer products at percent levels. High environmental concentrations have been observed near cities and polymer, textile, and electronics manufacturing centers. Most studies have focused on European, North American, and Asian locales. Releases are likely rising most dramatically in countries with weak environmental and human health regulation and enforcement, demand for electrical and electronic equipment (EEE) is escalating, and importation of waste EEE occurs. Several African countries meet these criteria, but little data are available on burdens or sources. To better understand the extent of BFR environmental dissemination in a southern African urban community, inland and coastal sediments were collected in the eThekwini metropolitan municipality, South Africa, and analyzed for polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB), 2-ethylhexyl 2,3,4,5-tretabromophalate (TBPH), 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE), and decabromodiphenyl ethane (DBDPE). BFRs were detected in all samples (n = 45). Concentration data are presented on total organic carbon (TOC) normalized basis. ΣBFR ranged from 114 to 47 100 ng g(-1). Decabromodiphenyl ether was detected in 93% of samples (mean concentration 3208 ng g(-1)) followed by TBB at 91% (mean conc. 545 ng g(-1)). Durban Bay is strongly influenced by urban runoff and tidal hydrology, and sediments therein exhibited ΣPBDE concentrations ranging from 1850 to 25 400 ng g(-1) (median conc. 3240 ng g(-1)). These levels rival those in the heavily impacted Pearl River Delta, China. BFRs likely enter the South African environment during manufacture of BFR-containing products, during and following product use (i.e., after disposal and as a result of materials recycling activities), and from nonpoint sources such as atmospheric fallout and urban runoff. These results underline the need to investigate further the environmental burdens and risks associated with BFRs in developing countries.


Assuntos
Retardadores de Chama/análise , Sedimentos Geológicos/análise , Hidrocarbonetos Bromados/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , África do Sul , Espectrometria de Massas em Tandem
11.
Sci Total Environ ; 862: 160811, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502972

RESUMO

Woodlands and pastures across the Post Oak Savannas (POS) in Texas have been undergoing thicketization over the last century via encroachment by understory shrubs such as Yaupon (Ilex decidua, Ilex vomitoria) and expansion of eastern redcedar (Juniperus virginiana). Because a large part of POS overlies the Carrizo-Wilcox (CW) aquifer - the third most important aquifer in Texas, there is a strong incentive to identify opportunities to increase groundwater recharge through land management. The purpose of this research is to evaluate the influence of thicketization of post oak (Quercus stellata) stands on deep drainage (DD) in POS. We achieved this by, a) applying chloride mass balance on soil cores, and b) simultaneously monitoring soil moisture in a woodland pasture setting in POS. Four sites representing different vegetation covers were identified for sampling: 1) a thicketized oak woodland paired with an adjacent open site, 2) a woodland mosaic, 3) a pasture and 4) a pine-oak stand paired with an adjacent open site. A total of 24 soil cores to the depth of 260 cm were collected and (soil) pore water chloride concentrations at multiple depths were measured. Soil moisture was monitored at 21 locations, to the depth of 140-260 cm using a neutron moisture meter. Negligible DD was estimated in the thicketized woodland, whereas most open locations recorded 3-18 cm/year and the woodland mosaic 0-1 cm of DD. Soil moisture data, collected from Jul-2020 to Jun-2021 also suggested higher deep drainage fluxes under open areas - with occurrence of sub-surface saturation only under the open areas and never under the woodlands. These results suggest that the thicketization in oak savannas is substantially reducing groundwater recharge. Given the extent of thicketized oak savannas across United States, this could be impacting water budgets and groundwater recharge rates on regional scales.


Assuntos
Água Subterrânea , Quercus , Ecossistema , Cloretos , Florestas , Solo , Água/análise
12.
J Med Entomol ; 60(6): 1406-1417, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37643730

RESUMO

Zoos provide a unique opportunity to study mosquito feeding ecology as they represent areas where exotic animals, free-roaming native animals, humans, and mosquito habitats overlap. Therefore, these locations are a concern for arbovirus transmission to both valuable zoo animals and human visitors. We sampled mosquitoes in and around The Nashville Zoo at Grassmere in Tennessee, USA, over 4 months in 2020 using 4 mosquito trap methods and 12 sampling locations. Mosquitoes were identified to species, Culex mosquitoes were analyzed for arboviruses, and all engorged mosquitoes were preserved for host usage analysis. We captured over 9,000 mosquitoes representing 27 different species, including a new species record for Davidson County, TN (Culex nigripalpus Theobald). Minimum infection rates for West Nile virus (WNV) (Flaviviridae: Flavivirus), St. Louis encephalitis virus (Flaviviridae: Flavivirus), and Flanders virus (Hapavirus: Rhabdoviridae) were 0.79, 0, and 4.17, respectively. The collection of 100 engorged mosquitoes was dominated by Culex pipiens pipiens Linnaeus (38%), Culex erraticus Dyar and Knab (23%), and Culex pipiens pipiens-Culex pipiens quinquefasciatus hybrids (10%). Host DNA from 84 engorged mosquitoes was successfully matched to a variety of host species (n = 23), with just 8 species belonging to the zoo. Wild birds were the most frequently fed upon host, in particular northern cardinals (Cardinalis cardinalis L. Passeriformes: Cardinalidae), which are competent WNV reservoirs. Taken together, our results demonstrate the utility of zoos as sentinels for emerging pathogens, for studying wildlife and human risk of zoonotic diseases, and for assessing vector diversity.


Assuntos
Arbovírus , Culex , Culicidae , Flavivirus , Passeriformes , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Mosquitos Vetores/genética , Culex/genética , Vírus do Nilo Ocidental/genética , Flavivirus/genética , Animais Selvagens , Comportamento Alimentar
13.
Microbiol Spectr ; : e0147622, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943043

RESUMO

The increasing occurrence of drought is a global challenge that threatens food security through direct impacts to both plants and their interacting soil microorganisms. Plant growth promoting microbes are increasingly being harnessed to improve plant performance under stress. However, the magnitude of microbiome impacts on both structural and physiological plant traits under water limited and water replete conditions are not well-characterized. Using two microbiomes sourced from a ponderosa pine forest and an agricultural field, we performed a greenhouse experiment that used a crossed design to test the individual and combined effects of the water availability and the soil microbiome composition on plant performance. Specifically, we studied the structural and leaf functional traits of maize that are relevant to drought tolerance. We further examined how microbial relationships with plant phenotypes varied under different combinations of microbial composition and water availability. We found that water availability and microbial composition affected plant structural traits. Surprisingly, they did not alter leaf function. Maize grown in the forest-soil microbiome produced larger plants under well-watered and water-limited conditions, compared to an agricultural soil community. Although leaf functional traits were not significantly different between the watering and microbiome treatments, the bacterial composition and abundance explained significant variability in both plant structure and leaf function within individual treatments, especially water-limited plants. Our results suggest that bacteria-plant interactions that promote plant performance under stress depend upon the greater community composition and the abiotic environment. IMPORTANCE Globally, drought is an increasingly common and severe stress that causes significant damage to agricultural and wild plants, thereby threatening food security. Despite growing evidence of the potential benefits of soil microorganisms on plant performance under stress, decoupling the effects of the microbiome composition versus the water availability on plant growth and performance remains a challenge. We used a highly controlled and replicated greenhouse experiment to understand the impacts of microbial community composition and water limitation on corn growth and drought-relevant functions. We found that both factors affected corn growth, and, interestingly, that individual microbial relationships with corn growth and leaf function were unique to specific watering/microbiome treatment combinations. This finding may help explain the inconsistent success of previously identified microbial inocula in improving plant performance in the face of drought, outside controlled environments.

14.
Front Plant Sci ; 13: 825097, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401584

RESUMO

With current observations and future projections of more intense and frequent droughts in the tropics, understanding the impact that extensive dry periods may have on tree and ecosystem-level transpiration and concurrent carbon uptake has become increasingly important. Here, we investigate paired soil and tree water extraction dynamics in an old-growth upland forest in central Amazonia during the 2018 dry season. Tree water use was assessed via radial patterns of sap flow in eight dominant canopy trees, each a different species with a range in diameter, height, and wood density. Paired multi-sensor soil moisture probes used to quantify volumetric water content dynamics and soil water extraction within the upper 100 cm were installed adjacent to six of those trees. To link depth-specific water extraction patterns to root distribution, fine root biomass was assessed through the soil profile to 235 cm. To scale tree water use to the plot level (stand transpiration), basal area was measured for all trees within a 5 m radius around each soil moisture probe. The sensitivity of tree transpiration to reduced precipitation varied by tree, with some increasing and some decreasing in water use during the dry period. Tree-level water use scaled with sapwood area, from 11 to 190 L per day. Stand level water use, based on multiple plots encompassing sap flow and adjacent trees, varied from ∼1.7 to 3.3 mm per day, increasing linearly with plot basal area. Soil water extraction was dependent on root biomass, which was dense at the surface (i.e., 45% in the upper 5 cm) and declined dramatically with depth. As the dry season progressed and the upper soil dried, soil water extraction shifted to deeper levels and model projections suggest that much of the water used during the month-long dry-down could be extracted from the upper 2-3 m. Results indicate variation in rates of soil water extraction across the research area and, temporally, through the soil profile. These results provide key information on whole-tree contributions to transpiration by canopy trees as water availability changes. In addition, information on simultaneous stand level dynamics of soil water extraction that can inform mechanistic models that project tropical forest response to drought.

15.
Mar Pollut Bull ; 172: 112764, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34425363

RESUMO

Richards Bay Harbour (RBH) is situated in the industrialized area on the northeast coast of South Africa. To decipher recent human activities and accompanying environmental degradation, surface sediment was collected across RBH and analysed for granulometric and elemental composition, microfaunal assemblages, and microplastics. Microplastics occur most abundantly near recreational areas, whereas metal contamination relates to activities at bulk goods terminals from which they are imported or exported. In particular, Cr and Cu concentrations in surface sediment near bulk goods terminals exceed South African sediment quality guidelines. In metal contaminated sediment, bioindicators reflected stress and were noticeably impacted. A transect of short sediment cores reflects spatial and historical metal contamination and allows quantification of the load of metals within the sediment column. The volume of metal (Cr) contaminated sediment was estimated at almost 2 million m3.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Baías , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Plásticos , África do Sul , Poluentes Químicos da Água/análise
16.
Mol Phylogenet Evol ; 53(1): 23-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19501181

RESUMO

Crabs of the family Hymenosomatidae are common in coastal and shelf regions throughout much of the southern hemisphere. One of the genera in the family, Hymenosoma, is represented in Africa and the South Pacific (Australia and New Zealand). This distribution can be explained either by vicariance (presence of the genus on the Gondwanan supercontinent and divergence following its break-up) or more recent transoceanic dispersal from one region to the other. We tested these hypotheses by reconstructing phylogenetic relationships among the seven presently-accepted species in the genus, as well as examining their placement among other hymenosomatid crabs, using sequence data from two nuclear markers (Adenine Nucleotide Transporter [ANT] exon 2 and 18S rDNA) and three mitochondrial markers (COI, 12S and 16S rDNA). The five southern African representatives of the genus were recovered as a monophyletic lineage, and another southern African species, Neorhynchoplax bovis, was identified as their sister taxon. The two species of Hymenosoma from the South Pacific neither clustered with their African congeners, nor with each other, and should therefore both be placed into different genera. Molecular dating supports a post-Gondwanan origin of the Hymenosomatidae. While long-distance dispersal cannot be ruled out to explain the presence of the family Hymenosomatidae on the former Gondwanan land-masses and beyond, the evolutionary history of the African species of Hymenosoma indicates that a third means of speciation may be important in this group: gradual along-coast dispersal from tropical towards temperate regions, with range expansions into formerly inhospitable habitat during warm climatic phases, followed by adaptation and speciation during subsequent cooler phases.


Assuntos
Braquiúros/genética , Evolução Molecular , Especiação Genética , Filogenia , Animais , Braquiúros/classificação , DNA Mitocondrial/genética , DNA Ribossômico/genética , Análise de Sequência de DNA
17.
Mar Pollut Bull ; 138: 49-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30660298

RESUMO

The toxic equivalences (TEQs) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from sediment of aquatic systems in Durban, South Africa were determined in two ways: 1) TEQs of PAHs and PCBs were determined by instrumental analyses and converted to 2,3,7,8­tetrachlorodibenzo­para­dioxin equivalence (TCDDeq). 2) Bioassay equivalences (BEQs) of aryl hydrocarbon receptor (AhR) ligands were analysed using the H4IIE-luc bioassay. TEQs of PCBs ranged from below limit of detection (

Assuntos
Sedimentos Geológicos/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Ecotoxicologia/métodos , Limite de Detecção , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ratos , Receptores de Hidrocarboneto Arílico/metabolismo , África do Sul
18.
Front Plant Sci ; 10: 830, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316536

RESUMO

Current climate change scenarios indicate warmer temperatures and the potential for more extreme droughts in the tropics, such that a mechanistic understanding of the water cycle from individual trees to landscapes is needed to adequately predict future changes in forest structure and function. In this study, we contrasted physiological responses of tropical trees during a normal dry season with the extreme dry season due to the 2015-2016 El Niño-Southern Oscillation (ENSO) event. We quantified high resolution temporal dynamics of sap velocity (Vs), stomatal conductance (gs) and leaf water potential (ΨL) of multiple canopy trees, and their correlations with leaf temperature (Tleaf) and environmental conditions [direct solar radiation, air temperature (Tair) and vapor pressure deficit (VPD)]. The experiment leveraged canopy access towers to measure adjacent trees at the ZF2 and Tapajós tropical forest research (near the cities of Manaus and Santarém). The temporal difference between the peak of gs (late morning) and the peak of VPD (early afternoon) is one of the major regulators of sap velocity hysteresis patterns. Sap velocity displayed species-specific diurnal hysteresis patterns reflected by changes in Tleaf. In the morning, Tleaf and sap velocity displayed a sigmoidal relationship. In the afternoon, stomatal conductance declined as Tleaf approached a daily peak, allowing ΨL to begin recovery, while sap velocity declined with an exponential relationship with Tleaf. In Manaus, hysteresis indices of the variables Tleaf-Tair and ΨL-Tleaf were calculated for different species and a significant difference (p < 0.01, α = 0.05) was observed when the 2015 dry season (ENSO period) was compared with the 2017 dry season ("control scenario"). In some days during the 2015 ENSO event, Tleaf approached 40°C for all studied species and the differences between Tleaf and Tair reached as high at 8°C (average difference: 1.65 ± 1.07°C). Generally, Tleaf was higher than Tair during the middle morning to early afternoon, and lower than Tair during the early morning, late afternoon and night. Our results support the hypothesis that partial stomatal closure allows for a recovery in ΨL during the afternoon period giving an observed counterclockwise hysteresis pattern between ΨL and Tleaf.

19.
BMC Evol Biol ; 8: 341, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19108720

RESUMO

BACKGROUND: Genetic breaks separating regional lineages of marine organisms with potentially high broadcasting abilities are generally attributed either to dispersal barriers such as currents or upwelling, or to behavioural strategies promoting self-recruitment. We investigated whether such patterns could potentially also be explained by adaptations to different environmental conditions by studying two morphologically distinguishable genetic lineages of the estuarine mudprawn Upogebia africana across a biogeographic disjunction in south-eastern Africa. The study area encompasses a transition between temperate and subtropical biotas, where the warm, southward-flowing Agulhas Current is deflected away from the coast, and its inshore edge is characterised by intermittent upwelling. To determine how this phylogeographic break is maintained, we estimated gene flow among populations in the region, tested for isolation by distance as an indication of larval retention, and reared larvae of the temperate and subtropical lineages at a range of different temperatures. RESULTS: Of four populations sampled, the two northernmost exclusively included the subtropical lineage, a central population had a mixture of both lineages, and the southernmost estuary had only haplotypes of the temperate lineage. No evidence was found for isolation by distance, and gene flow was bidirectional and of similar magnitude among adjacent populations. In both lineages, the optimum temperature for larval development was at about 23 degrees C, but a clear difference was found at lower temperatures. While larvae of the temperate lineage could complete development at temperatures as low as 12 degrees C, those of the subtropical lineage did not complete development below 17 degrees C. CONCLUSION: The results indicate that both southward dispersal of the subtropical lineage inshore of the Agulhas Current, and its establishment in the temperate province, may be limited primarily by low water temperatures. There is no evidence that the larvae of the temperate lineage would survive less well in the subtropical province than in their native habitat, and their exclusion from this region may be due to a combination of upwelling, short larval duration with limited dispersal potential near the coast, plus transport away from the coast of larvae that become entrained in the Agulhas Current. This study shows how methods from different fields of research (genetics, physiology, oceanography and morphology) can be combined to study phylogeographic patterns.


Assuntos
Decápodes/genética , Especiação Genética , Filogenia , África , Migração Animal , Animais , Decápodes/classificação , Decápodes/crescimento & desenvolvimento , Fluxo Gênico , Genética Populacional , Haplótipos , Larva/genética , Oceanos e Mares , Temperatura
20.
Front Microbiol ; 6: 796, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300864

RESUMO

Antibiotic resistant bacteria are ubiquitous in the natural environment. The introduction of effluent derived antibiotic resistance genes (ARGs) into aquatic environments is of concern in the spreading of genetic risk. This study showed the prevalence of sulfonamide and tetracycline resistance genes, sul1, sul2, sul3, and tet(M), in the total bacterial assemblage and colony forming bacterial assemblage in river and estuarine water and sewage treatment plants (STP) in South Africa. There was no correlation between antibiotic concentrations and ARGs, suggesting the targeted ARGs are spread in a wide area without connection to selection pressure. Among sul genes, sul1 and sul2 were major genes in the total (over 10(-2) copies/16S) and colony forming bacteria assemblages (∼10(-1) copies/16S). In urban waters, the sul3 gene was mostly not detectable in total and culturable assemblages, suggesting sul3 is not abundant. tet(M) was found in natural assemblages with 10(-3) copies/16S level in STP, but was not detected in colony forming bacteria, suggesting the non-culturable (yet-to-be cultured) bacterial community in urban surface waters and STP effluent possess the tet(M) gene. Sulfamethoxazole (SMX) resistant (SMX(r)) and oxytetracycline (OTC) resistant (OTC(r)) bacterial communities in urban waters possessed not only sul1 and sul2 but also sul3 and tet(M) genes. These genes are widely distributed in SMX(r) and OTC(r) bacteria. In conclusion, urban river and estuarine water and STP effluent in the Durban area were highly contaminated with ARGs, and the yet-to-be cultured bacterial community may act as a non-visible ARG reservoir in certain situations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA