Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biometrics ; 77(1): 352-361, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32243577

RESUMO

State-space models (SSMs) are a popular tool for modeling animal abundances. Inference difficulties for simple linear SSMs are well known, particularly in relation to simultaneous estimation of process and observation variances. Several remedies to overcome estimation problems have been studied for relatively simple SSMs, but whether these challenges and proposed remedies apply for nonlinear stage-structured SSMs, an important class of ecological models, is less well understood. Here we identify improvements for inference about nonlinear stage-structured SSMs fit with biased sequential life stage data. Theoretical analyses indicate parameter identifiability requires covariates in the state processes. Simulation studies show that plugging in externally estimated observation variances, as opposed to jointly estimating them with other parameters, reduces bias and standard error of estimates. In contrast to previous results for simple linear SSMs, strong confounding between jointly estimated process and observation variance parameters was not found in the models explored here. However, when observation variance was also estimated in the motivating case study, the resulting process variance estimates were implausibly low (near-zero). As SSMs are used in increasingly complex ways, understanding when inference can be expected to be successful, and what aids it, becomes more important. Our study illustrates (a) the need for relevant process covariates and (b) the benefits of using externally estimated observation variances for inference about nonlinear stage-structured SSMs.


Assuntos
Grupos de População Animal , Dinâmica não Linear , Animais , Modelos Teóricos , Dinâmica Populacional , Simulação de Ambiente Espacial
2.
Environ Monit Assess ; 188(7): 399, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27277094

RESUMO

Designing and implementing natural resource monitoring is a challenging endeavor undertaken by many agencies, NGOs, and citizen groups worldwide. Yet many monitoring programs fail to deliver useful information for a variety of administrative (staffing, documentation, and funding) or technical (sampling design and data analysis) reasons. Programs risk failure if they lack a clear motivating problem or question, explicit objectives linked to this problem or question, and a comprehensive conceptual model of the system under study. Designers must consider what "success" looks like from a resource management perspective, how desired outcomes translate to appropriate attributes to monitor, and how they will be measured. All such efforts should be filtered through the question "Why is this important?" Failing to address these considerations will produce a program that fails to deliver the desired information. We addressed these issues through creation of a "road map" for designing and implementing a monitoring program, synthesizing multiple aspects of a monitoring program into a single, overarching framework. The road map emphasizes linkages among core decisions to ensure alignment of all components, from problem framing through technical details of data collection and analysis, to program administration. Following this framework will help avoid common pitfalls, keep projects on track and budgets realistic, and aid in program evaluations. The road map has proved useful for monitoring by individuals and teams, those planning new monitoring, and those reviewing existing monitoring and for staff with a wide range of technical and scientific skills.


Assuntos
Coleta de Dados/métodos , Monitoramento Ambiental/métodos , Humanos , Avaliação de Programas e Projetos de Saúde
3.
Ecol Evol ; 13(6): e10154, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304369

RESUMO

The resolution at which animal populations can be modeled can be increased when multiple datasets corresponding to different life stages are available, allowing, for example, seasonal instead of annual descriptions of dynamics. However, the abundance estimates used for model fitting can have multiple sources of error, both random and systematic, namely bias. We focus here on the consequences of, and how to address, differing and unknown observation biases when fitting models.State-space models (SSMs) separate process variation and observation error, thus providing a framework to account for different and unknown estimate biases across multiple datasets. Here we study the effects on the inference of including or excluding bias parameters for a sequential life stage population dynamics SSM using a combination of theory, simulation experiments, and an empirical example.When the data, that is, abundance estimates, are unbiased, including bias parameters leads to increased imprecision compared to a model that correctly excludes bias parameters. But when observations are biased and no bias parameters are estimated, recruitment and survival processes are inaccurately estimated and estimates of process variance become biased high. These problems are substantially reduced by including bias parameters and fixing one of them at even an incorrect value. The primary inferential challenge is that models with bias parameters can show properties of being parameter redundant even when they are not in theory.Combining multiple datasets into a single analysis by using bias parameters to rescale data can offer significant improvements to inference and model diagnostics. Because their estimability in practice is dataset specific and will likely require more precise estimates than might be expected from ecological datasets, we outline some strategies for characterizing process uncertainty when it is confounded by bias parameters.

4.
Ecol Appl ; 20(5): 1417-30, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20666258

RESUMO

Four species of pelagic fish of particular management concern in the upper San Francisco Estuary, California, USA, have declined precipitously since ca. 2002: delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). The estuary has been monitored since the late 1960s with extensive collection of data on the fishes, their pelagic prey, phytoplankton biomass, invasive species, and physical factors. We used multivariate autoregressive (MAR) modeling to discern the main factors responsible for the declines. An expert-elicited model was built to describe the system. Fifty-four relationships were built into the model, only one of which was of uncertain direction a priori. Twenty-eight of the proposed relationships were strongly supported by or consistent with the data, while 26 were close to zero (not supported by the data but not contrary to expectations). The position of the 2 per thousand isohaline (a measure of the physical response of the estuary to freshwater flow) and increased water clarity over the period of analyses were two factors affecting multiple declining taxa (including fishes and the fishes' main zooplankton prey): Our results were relatively robust with respect to the form of stock-recruitment model used and to inclusion of subsidiary covariates but may be enhanced by using detailed state-space models that describe more fully the life-history dynamics of the declining species.


Assuntos
Peixes/crescimento & desenvolvimento , Animais , Análise Multivariada , Dinâmica Populacional , São Francisco
5.
Ecol Appl ; 20(5): 1431-48, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20666259

RESUMO

We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2 per thousand isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.


Assuntos
Teorema de Bayes , Peixes/crescimento & desenvolvimento , Animais , Dinâmica Populacional , São Francisco
6.
Biometrics ; 65(2): 572-83, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18565166

RESUMO

SUMMARY: We compare two Monte Carlo (MC) procedures, sequential importance sampling (SIS) and Markov chain Monte Carlo (MCMC), for making Bayesian inferences about the unknown states and parameters of state-space models for animal populations. The procedures were applied to both simulated and real pup count data for the British grey seal metapopulation, as well as to simulated data for a Chinook salmon population. The MCMC implementation was based on tailor-made proposal distributions combined with analytical integration of some of the states and parameters. SIS was implemented in a more generic fashion. For the same computing time MCMC tended to yield posterior distributions with less MC variation across different runs of the algorithm than the SIS implementation with the exception in the seal model of some states and one of the parameters that mixed quite slowly. The efficiency of the SIS sampler greatly increased by analytically integrating out unknown parameters in the observation model. We consider that a careful implementation of MCMC for cases where data are informative relative to the priors sets the gold standard, but that SIS samplers are a viable alternative that can be programmed more quickly. Our SIS implementation is particularly competitive in situations where the data are relatively uninformative; in other cases, SIS may require substantially more computer power than an efficient implementation of MCMC to achieve the same level of MC error.


Assuntos
Animais Selvagens/fisiologia , Interpretação Estatística de Dados , Ecossistema , Projetos de Pesquisa Epidemiológica , Modelos Biológicos , Modelos Estatísticos , Dinâmica Populacional , Algoritmos , Animais , Biometria/métodos , Simulação por Computador , Método de Monte Carlo
7.
PLoS One ; 8(7): e67829, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861814

RESUMO

Studying rare and sensitive species is a challenge in conservation biology. The problem is exemplified by the case of the imperiled delta smelt Hypomesus transpacificus, a small delicate fish species endemic to the San Francisco Estuary, California. Persistent record-low levels of abundance and relatively high sensitivity to handling stress pose considerable challenges to studying delta smelt in the wild. To attempt to overcome these and other challenges we have developed the SmeltCam, an underwater video camera codend for trawled nets. The SmeltCam functions as an open-ended codend that automatically collects information on the number and species of fishes that pass freely through a trawled net without handling. We applied the SmeltCam to study the fine-scale distribution of juvenile delta smelt in the water column in the upper San Francisco Estuary. We learned that during flood tides delta smelt were relatively abundant throughout the water column and that during ebb tides delta smelt were significantly less abundant and occurred only in the lower half and sides of the water column. The results suggest that delta smelt manipulate their position in the water column to facilitate retention in favorable habitats. With the application of the SmeltCam we increased the survival of individual delta smelt by 72% compared to using a traditional codend, where all of the fish would have likely died due to handling stress. The SmeltCam improves upon similar previously developed silhouette photography or video recording devices and demonstrates how new technology can be developed to address important questions in conservation biology as well as lessen the negative effects associated with traditional sampling methods on imperiled species.


Assuntos
Distribuição Animal/fisiologia , Conservação dos Recursos Naturais/métodos , Osmeriformes/fisiologia , Gravação em Vídeo/instrumentação , Animais , Ecossistema , Espécies em Perigo de Extinção , Estuários , São Francisco , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA