Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Chem Rev ; 124(8): 4543-4678, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38564235

RESUMO

The activity and durability of the Cu/ZnO/Al2O3 (CZA) catalyst formulation for methanol synthesis from CO/CO2/H2 feeds far exceed the sum of its individual components. As such, this ternary catalytic system is a prime example of synergy in catalysis, one that has been employed for the large scale commercial production of methanol since its inception in the mid 1960s with precious little alteration to its original formulation. Methanol is a key building block of the chemical industry. It is also an attractive energy storage molecule, which can also be produced from CO2 and H2 alone, making efficient use of sequestered CO2. As such, this somewhat unusual catalyst formulation has an enormous role to play in the modern chemical industry and the world of global economics, to which the correspondingly voluminous and ongoing research, which began in the 1920s, attests. Yet, despite this commercial success, and while research aimed at understanding how this formulation functions has continued throughout the decades, a comprehensive and universally agreed upon understanding of how this material achieves what it does has yet to be realized. After nigh on a century of research into CZA catalysts, the purpose of this Review is to appraise what has been achieved to date, and to show how, and how far, the field has evolved. To do so, this Review evaluates the research regarding this catalyst formulation in a chronological order and critically assesses the validity and novelty of various hypotheses and claims that have been made over the years. Ultimately, the Review attempts to derive a holistic summary of what the current body of literature tells us about the fundamental sources of the synergies at work within the CZA catalyst and, from this, suggest ways in which the field may yet be further advanced.

2.
Nat Mater ; 23(5): 680-687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366155

RESUMO

Hybrid organic/inorganic materials have contributed to solve important challenges in different areas of science. One of the biggest challenges for a more sustainable society is to have active and stable catalysts that enable the transition from fossil fuel to renewable feedstocks, reduce energy consumption and minimize the environmental footprint. Here we synthesize novel hybrid materials where an amorphous oxide coating with embedded organic ligands surrounds metallic nanocrystals. We demonstrate that the hybrid coating is a powerful means to create electrocatalysts stable against structural reconstruction during the CO2 electroreduction. These electrocatalysts consist of copper nanocrystals encapsulated in a hybrid organic/inorganic alumina shell. This shell locks a fraction of the copper surface into a reduction-resistant Cu2+ state, which inhibits those redox processes responsible for the structural reconstruction of copper. The electrocatalyst activity is preserved, which would not be possible with a conventional dense alumina coating. Varying the shell thickness and the coating morphology yields fundamental insights into the stabilization mechanism and emphasizes the importance of the Lewis acidity of the shell in relation to the retention of catalyst structure. The synthetic tunability of the chemistry developed herein opens new avenues for the design of stable electrocatalysts and beyond.

3.
J Am Chem Soc ; 146(15): 10708-10715, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579275

RESUMO

Atomic layer deposition (ALD) is a method to grow thin metal oxide layers on a variety of materials for applications spanning from electronics to catalysis. Extending ALD to colloidally stable nanocrystals promises to combine the benefits of thin metal oxide coatings with the solution processability of the nanocrystals. However, challenges persist in applying this method, which relate to finding precursors that promote the growth of the metal oxide while preserving colloidal stability throughout the process. Herein, we introduce a colloidal ALD method to coat nanocrystals with amorphous metal oxide shells using metal and oxygen precursors that act as colloidal stabilizing ligands. Our scheme involves metal-amide precursors modified with solubilizing groups and oleic acid as the oxygen source. The growth of the oxide is self-limiting and proceeds in a layer-by-layer fashion. Our protocol is generalizable and intrinsically scalable. Potential applications in display, light detection, and catalysis are envisioned.

4.
J Am Chem Soc ; 145(9): 5370-5383, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847799

RESUMO

Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.

5.
Angew Chem Int Ed Engl ; 62(40): e202305140, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37314832

RESUMO

The methane-to-methanol (MtM) conversion via the oxygen looping approach using copper-exchanged zeolites has been extensively studied over the last decade. While a lot of research has focussed on maximizing yield and selectivity, little has been directed toward productivity-a metric far more meaningful for evaluating industrial potential. Using copper-exchanged zeolite omega (Cu-omega), a material highly active and selective for the MtM conversion using the isothermal oxygen looping approach, we show that this material exhibits unprecedented potential for industrial valorization. In doing so, we also present a novel methodology combining operando XAS and mass spectrometry for the screening of materials for the MtM conversion in oxygen looping mode.

6.
Angew Chem Int Ed Engl ; 61(15): e202200301, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35107196

RESUMO

The copper-zinc-alumina (CZA) catalyst is one of the most important catalysts. Nevertheless, understanding of the complex CZA structure is still limited and hampers further optimization. Critical to the production of a highly active and stable catalyst are optimal start-up procedures in hydrogen. Here, by employing operando X-ray absorption spectroscopy and X-ray diffraction, we follow how the industrial CZA precursor evolves into the working catalyst. Two major events in the activation drastically alter the copper- and zinc-containing components in the CZA catalyst and define the final working catalyst structure: the reduction of the starting copper(II) oxide, and the ripening and re-oxidation of zinc oxide upon the switch to catalytic conditions. These drastic events are also accompanied by other gradual, structural changes. Understanding what happens during these events is key to develop tailored start-up protocols that are aimed at maximal longevity and activity of the catalysts.

7.
Chem Soc Rev ; 49(5): 1449-1486, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32107517

RESUMO

In this critical review we examine the current state of our knowledge in respect of the nature of the active sites in copper containing zeolites for the selective conversion of methane to methanol. We consider the varied experimental evidence arising from the application of X-ray diffraction, and vibrational, electronic, and X-ray spectroscopies that exist, along with the results of theory. We aim to establish both what is known regarding these elusive materials and how they function, and also where gaps in our knowledge still exist, and offer suggestions and strategies as to how these might be closed such that the rational design of more effective and efficient materials of this type for the selective conversion of methane might proceed further.

8.
Angew Chem Int Ed Engl ; 60(33): 18138-18143, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34076327

RESUMO

A promising strategy to break through the selectivity-conversion limit of direct methane conversion to achieve high yields is the protection of methanol via esterification to a more stable methyl ester. We present an aerobic methane-to-methyl-ester approach that utilizes a highly dispersed, cobalt-containing solid catalyst, along with significantly more favorable reaction conditions compared to existing homogeneously-catalyzed approaches (e.g. diluted acid, O2 oxidant, moderate temperature and pressure). The trifluoroacetic acid medium is diluted (<25 wt %) with an inert fluorous co-solvent that can be recovered after the separation of the methyl trifluoroacetate via liquid-liquid extraction at ambient conditions. Silica-supported cobalt catalysts are highly active in this system, with competitive yields and turnovers in comparison to known aerobic transition metal-based catalytic systems.

9.
Angew Chem Int Ed Engl ; 60(31): 17053-17059, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33983683

RESUMO

Pd/ZnO catalysts show good activity and high selectivity to methanol during catalytic CO2 hydrogenation. The Pd-Zn alloy phase has usually been considered as the active phase, though mechanistic studies under operando conditions have not been conducted to verify this. Here, we report a mechanistic study under realistic conditions of methanol synthesis, using in situ and operando X-ray absorption spectroscopy, X-ray powder diffraction, and time-resolved isotope labeling experiments coupled with FTIR spectroscopy and mass spectrometry. Pd-Zn alloy-based catalysts, prepared through reduction of a heterobimetallic PdII ZnII acetate bridge complex, and which do not contain zinc oxide or any PdZn/ZnO interface, produce mostly CO. The Pd-Zn phase is associated with the formation of CO, and does not provide the active sites required to produce methanol from the direct hydrogenation of carbon dioxide. The presence of a ZnO phase, in contact with a Pd-Zn phase, is essential for efficient methanol production.

10.
Angew Chem Int Ed Engl ; 60(29): 16200-16207, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34132453

RESUMO

The selective conversion of methane to methanol remains one of the holy grails of chemistry, where Cu-exchanged zeolites have been shown promote this reaction under stepwise conditions. Over the years, several active sites have been proposed, ranging from mono-, di- to trimeric CuII . Herein, we report the formation of well-dispersed monomeric CuII species supported on alumina using surface organometallic chemistry and their reactivity towards the selective and stepwise conversion of methane to methanol. Extensive studies using various transition alumina supports combined with spectroscopic characterization, in particular electron paramagnetic resonance (EPR), show that the active sites are associated with specific facets, which are typically found in γ- and η-alumina phase, and that their EPR signature can be attributed to species having a tri-coordinated [(Al2 O)CuIIO(OH)]- T-shape geometry. Overall, the selective conversion of methane to methanol, a two-electron process, involves two monomeric CuII sites that play in concert.

11.
Chemistry ; 26(36): 8012-8016, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32154949

RESUMO

Non-oxidative CH4 coupling is promoted by silica with incorporated iron sites, but the role of these sites and their speciation under reaction conditions are poorly understood. Here, silica-supported iron(II) single sites, prepared via surface organometallic chemistry and stable at 1020 °C in vacuum, are shown to rapidly initiate CH4 coupling at 1000 °C, leading to 15-22 % hydrocarbons selectivity at 3-4 % conversion. During this process, iron reduces and forms carburized iron(0) nanoparticles. This reactivity contrasts with what is observed for (iron-free) partially dehydroxylated silica, that readily converts methane, albeit with low hydrocarbon selectivity and after an induction period. This study supports that iron sites facilitate faster initiation of radical reactions and tame the surface reactivity.

12.
Phys Chem Chem Phys ; 22(13): 6826-6837, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32186570

RESUMO

Copper(ii) containing materials are widely studied for a very diverse array of applications from biology, through catalysis, to many other materials chemistry based applications. We show that, for grafted copper compounds at the surface of silica, and for the study of the selective conversion of methane to methanol using copper ion-exchanged zeolites, the application of focused X-ray beams for spectroscopic investigations is subject to significant challenges. We demonstrate how unwanted effects due to the X-rays manifest, which can prevent the study of certain types of reactive systems, and/or lead to the derivation of results that are not at all representative of the behavior of the materials in question. With reference to identical studies conducted at a beamline that does not focus its X-rays, we then delineate how the total photon throughput and the brilliance of the applied X-rays affect the apparent behavior of copper in zeolites during the stepwise, high temperature and aerobic activation approach to the selective conversion of methane to methanol. We show that the use of increasingly brilliant X-ray sources for X-ray spectroscopy can bring with it significant caveats to obtaining valid and quantitative structure-reactivity relationships (QSARS) and kinetics for this class of material. Lastly, through a systematic study of these effects, we suggest ways to ensure that valuable allocations of X-ray beam time result in measurements that reflect the real nature of the chemistry under study and not that due to other, extraneous, factors.

13.
Chimia (Aarau) ; 74(4): 237-240, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32331539

RESUMO

The selective partial oxidation of methane to methanol remains a great challenge in the field of catalysis. Cu-exchanged zeolites are promising materials, directly and selectively converting methane to methanol with high yield under cyclic conditions. However, the economic viability of these aluminosilicate materials for potential industrial applications remains a challenge. Exploring copper supported on non-microporous oxide supports and rationalising the structure/reactivity relationships extends the scope of material investigation and opens new possibilities. Recently, copper on alumina was demonstrated to be active and selective for the partial oxidation of methane. This work aims to explore the formation of well-defined Cu(II) oxo species on silica via surface organometallic chemistry and examines their reactivity for the selective transformation of methane to methanol. Isolated Cu(II) sites were generated via grafting of a tailored molecular precursor. Activation under oxidative conditions and subsequent removal of organic moieties from the grafted copper centres led to the formation of small copper (II) oxide clusters, which are active in the partial oxidation of methane under mild conditions, albeit significantly less efficient than the corresponding isolated Cu(II) sites on alumina.

14.
Angew Chem Int Ed Engl ; 58(29): 9841-9845, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31069914

RESUMO

Monomeric CuII sites supported on alumina, prepared using surface organometallic chemistry, convert CH4 to CH3 OH selectively. This reaction takes place by formation of CH3 O surface species with the concomitant reduction of two monomeric CuII sites to CuI , according to mass balance analysis, infrared, solid-state nuclear magnetic resonance, X-ray absorption, and electron paramagnetic resonance spectroscopy studies. This material contains a significant fraction of Cu active sites (22 %) and displays a selectivity for CH3 OH exceeding 83 %, based on the number of electrons involved in the transformation. These alumina-supported CuII sites reveal that C-H bond activation, along with the formation of CH3 O- surface species, can occur on pairs of proximal monomeric CuII sites in a short reaction time.

15.
J Am Chem Soc ; 140(32): 10090-10093, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30071725

RESUMO

The application and quantification of in situ copper K-edge X-ray absorption near-edge structure (XANES), when linked to independently made reactor-based studies of methanol production, result in a majority relation between the production of CuI and methanol from methane that complies with the expectations of a two-electron mechanism founded upon CuII/CuI redox couples.

16.
J Am Chem Soc ; 138(42): 13930-13940, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27696837

RESUMO

The kinetics involved in a recently revealed ambient-temperature mechanism for the catalytic oxidation of carbon monoxide by oxygen over a 5 wt % Pt/Al2O3 catalyst are evaluated within a periodic, plug flow, redox operation paradigm using combined mass spectrometry (MS), diffuse reflectance infrared spectroscopy (DRIFTS), and time-resolved Pt L3-edge XAFS. The species that are the most active at room temperature are shown to be a high-wavenumber (ca. 1690 cm-1) carbonate that we associate directly with a room-temperature redox process occurring in a fraction of the Pt atoms present in the catalyst. Our results, however, do not exclude the participation of carbonate species native to the Al2O3 support, though these species tend to store CO at ambient temperature and become significant participants in CO oxidation catalysis only at slightly higher temperatures (323-333 K). Pt carbonate formation (1690 cm-1) under CO and the reaction to yield CO2 is shown to be extremely rapid and subject to an average apparent activation energy (Eapp), across the techniques applied, of 8.7 kJ mol-1, within the temperature range investigated (276-343 K). Reoxidation of Pt (XANES) and subsequent CO2 production mediated by Pt carbonates under O2 (MS/IR) displays a first-order dependence upon O2 partial pressure and a negative dependence upon the coverage of CO adsorbed on the Pt nanoparticles also present in this catalyst. This oxidative regeneration/CO2 production step is subject to an apparent activation energy (Eapp) of 56.5 (±5) kJ mol-1, is kinetically limited by the desorption of molecular CO from Pt nanoparticles, and also is shown to be dependent upon the partial pressure of O2 present in the oxidizing half of the cycle that we associate with the direct interaction of O2 with molecular CO adsorbed on the nanoparticles that promotes their desorption. Finally, a minority reactive state producing CO2 in the oxidizing cycle that displays no dependence upon the CO coverage of the nanoparticles can be induced through simple thermal treatment of the catalyst. These results are discussed in terms of the number and types of species present within the reactive system and in terms of the wider possibilities for the development of effective low-temperature CO oxidation using Pt/Al2O3 catalysts.

17.
J Am Chem Soc ; 137(12): 4151-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25768298

RESUMO

A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and "hot filtration" experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide-iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure.


Assuntos
Cloretos/química , Irídio/química , Potássio/química , Catálise , Hidrogenação , Ligantes , Espectroscopia por Absorção de Raios X
18.
J Synchrotron Radiat ; 22(6): 1426-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524308

RESUMO

The 2-4 keV energy range provides a rich window into many facets of materials science and chemistry. Within this window, P, S, Cl, K and Ca K-edges may be found along with the L-edges of industrially important elements from Y through to Sn. Yet, compared with those that cater for energies above ca. 4-5 keV, there are relatively few resources available for X-ray spectroscopy below these energies. In addition, in situ or operando studies become to varying degrees more challenging than at higher X-ray energies due to restrictions imposed by the lower energies of the X-rays upon the design and construction of appropriate sample environments. The XMaS beamline at the ESRF has recently made efforts to extend its operational energy range to include this softer end of the X-ray spectrum. In this report the resulting performance of this resource for X-ray spectroscopy is detailed with specific attention drawn to: understanding electrostatic and charge transfer effects at the S K-edge in ionic liquids; quantification of dilution limits at the Cl K- and Rh L3-edges and structural equilibria in solution; in vacuum deposition and reduction of [Rh(I)(CO)2Cl]2 to γ-Al2O3; contamination of γ-Al2O3 by Cl and its potential role in determining the chemical character of supported Rh catalysts; and the development of chlorinated Pd catalysts in `green' solvent systems. Sample environments thus far developed are also presented, characterized and their overall performance evaluated.

19.
Chemphyschem ; 15(14): 3049-59, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25044889

RESUMO

The effects of ceria and zirconia on the structure-function properties of supported rhodium catalysts (1.6 and 4 wt % Rh/γ-Al2O3) during CO exposure are described. Ceria and zirconia are introduced through two preparation methods: 1) ceria is deposited on γ-Al2O3 from [Ce(acac)3] and rhodium metal is subsequently added, and 2) through the controlled surface modification (CSM) technique, which involves the decomposition of [M(acac)x] (M=Ce, x=3; M=Zr, x=4) on Rh/γ-Al2O3. The structure-function correlations of ceria and/or zirconia-doped rhodium catalysts are investigated by diffuse reflectance infrared Fourier-transform spectroscopy/energy-dispersive extended X-ray absorption spectroscopy/mass spectrometry (DRIFTS/EDE/MS) under time-resolved, in situ conditions. CeOx and ZrO2 facilitate the protection of Rh particles against extensive oxidation in air and CO. Larger Rh core particles of ceriated and zirconiated Rh catalysts prepared by CSM are observed and compared with Rh/γ-Al2O3 samples, whereas supported Rh particles are easily disrupted by CO forming mononuclear Rh geminal dicarbonyl species. DRIFTS results indicate that, through the interaction of CO with ceriated Rh particles, a significantly larger amount of linear CO species form; this suggests the predominance of a metallic Rh phase.

20.
Angew Chem Int Ed Engl ; 53(34): 8890-4, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24903631

RESUMO

X-ray diffraction (XRD) is typically silent towards information on low loadings of precious metals on solid catalysts because of their finely dispersed nature. When combined with a concentration modulation approach, time-resolved high-energy XRD is able to provide the detailed redox dynamics of palladium nanoparticles with a diameter of 2 nm in 2 wt % Pd/CZ (CZ = ceria-zirconia), which is a difficult sample for extended X-ray absorption fine structure (EXAFS) measurements because of the cerium component. The temporal evolution of the Pd(111) and Ce(111) reflections together with surface information from synchronous diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) measurements reveals that Ce maintains Pd oxidized in the CO pulse, whereas reduction is detected at the beginning of the O2 pulse. Oxygen is likely transferred from Pd to Ce(3+) before the onset of Pd re-oxidation. In this context, adsorbed carbonates appear to be the rate-limiting species for re-oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA