RESUMO
There has been renewed interest in using mitochondrial uncoupler compounds such as niclosamide and carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) for the treatment of obesity, hepatosteatosis and diseases where oxidative stress plays a role. However, both FCCP and niclosamide have undesirable effects that are not due to mitochondrial uncoupling, such as inhibition of mitochondrial oxygen consumption by FCCP and induction of DNA damage by niclosamide. Through structure-activity analysis, we identified FCCP analogues that do not inhibit mitochondrial oxygen consumption but still provided good, although less potent, uncoupling activity. We also characterized the functional role of the niclosamide 4'-nitro group, the phenolic hydroxy group and the anilide amino group in mediating uncoupling activity. Our structural investigations provide important information that will aid further drug development.
Assuntos
Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Mitocôndrias , Niclosamida , Desacopladores , Niclosamida/farmacologia , Niclosamida/química , Desacopladores/farmacologia , Desacopladores/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/química , Humanos , Relação Estrutura-Atividade , Consumo de Oxigênio/efeitos dos fármacos , AnimaisRESUMO
One potential approach for treating obesity is to increase energy expenditure in brown and white adipose tissue. Here we aimed to achieve this outcome by targeting mitochondrial uncoupler compounds selectively to adipose tissue, thus avoiding side effects from uncoupling in other tissues. Selective drug accumulation in adipose tissue has been observed with many lipophilic compounds and dyes. Hence, we explored the feasibility of conjugating uncoupler compounds with a lipophilic C8-hydrocarbon chain via an ether bond. We found that substituting the trifluoromethoxy group in the uncoupler FCCP with a C8-hydrocarbon chain resulted in potent uncoupling activity. Nonetheless, the compound did not elicit therapeutic effects in mice, likely as a consequence of metabolic instability resulting from rapid ether bond cleavage. A lipophilic analog of the uncoupler compound 2,6-dinitrophenol, in which a C8-hydrocarbon chain was conjugated via an ether bond in the para-position (2,6-dinitro-4-(octyloxy)phenol), exhibited increased uncoupling activity compared to the parent compound. However, in vivo pharmacokinetics studies suggested that 2,6-dinitro-4-(octyloxy)phenol was also metabolically unstable. In conclusion, conjugation of a hydrophobic hydrocarbon chain to uncoupler compounds resulted in sustained or improved uncoupling activity. However, an ether bond linkage led to metabolic instability, indicating the need to conjugate lipophilic groups via other chemical bonds.
Assuntos
Tecido Adiposo Marrom , Tecido Adiposo , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Metabolismo Energético , Tecido Adiposo Branco/metabolismo , Éteres , Fenóis/farmacologia , Proteína Desacopladora 1/metabolismoRESUMO
Pathologists diagnose prostate cancer by core needle biopsy. In low-grade and low-volume cases, they look for a few malignant glands out of hundreds within a core. They may miss a few malignant glands, resulting in repeat biopsies or missed therapeutic opportunities. This study developed a multi-resolution deep-learning pipeline to assist pathologists in detecting malignant glands in core needle biopsies of low-grade and low-volume cases. Analyzing a gland at multiple resolutions, our model exploited morphology and neighborhood information, which were crucial in prostate gland classification. We developed and tested our pipeline on the slides of a local cohort of 99 patients in Singapore. Besides, we made the images publicly available, becoming the first digital histopathology dataset of patients of Asian ancestry with prostatic carcinoma. Our multi-resolution classification model achieved an area under the receiver operating characteristic curve (AUROC) value of 0.992 (95% confidence interval [CI]: 0.985-0.997) in the external validation study, showing the generalizability of our multi-resolution approach.
RESUMO
Cycle inhibiting factors (Cifs) are type III secretion system effectors produced by some Gram-negative pathogenic bacteria including Burkholderia pseudomallei Through their deamidase activity, Cifs inhibit the activity of Cullin RING E3 ubiquitin ligases (CRL). CRL inhibition induces the accumulation of cell cycle inhibitors p21 and p27, thereby leading to host cell cycle arrest. However, whether Cif exerts additional effects on host cells that are important in bacterial pathogenesis is currently poorly understood. In this study, we found that Cif exerts a bimodal effect on NF-κB signalling. Cif increases basal NF-κB activity. This effect is dependent on Cif-mediated activation of ERK MAPK. On the other hand, Cif inhibits NF-κB activation by TNFα and Burkholderia thailandensis infection. This inhibitory effect on NF-κB activity is partially mediated by Cif-dependent inhibition of CRLs. We also found that Cif only has a modest effect in stimulating the intracellular replication of the B. pseudomallei surrogate, B. thailandensis. The observed Cif-dependent stimulation of B. thailandensis intracellular replication was not, or was only partially, due to CRL inhibition. Furthermore, the increased B. thailandensis replication induced by Cif was independent of ERK MAPK activation. Our findings suggest that Cif likely exerts additional cellular effects through novel targets.
RESUMO
The renal cell carcinoma registry (RCCR) at the Singapore General Hospital was established in the 1980s. In 2012, the registry transited to a partially automated system using Research Electronic Data Capture (REDCap) and Oracle Business Intelligence Enterprise Edition (OBIEE), which is a platform for retrieval of electronic data from the Electronic Health Intelligence System (eHIntS). A committee was formed of experts from the department of urology and the health services research center, as well as an information technology (IT) team to evaluate the efficacy of the partially automated system. In the 5 years after the new system was implemented, 1,751 cases were recorded in the RCCR. The casefinding completeness increased by 1.9%, the data accuracy rate was 97%, and the efficiency increased by 12%. Strengths of the new system after partial automation were: (1) secure access to the registry via the hospital Web, (2) direct access to REDCap via the electronic medical records system, (3) automated and timely data extraction, and (4) visual presentation of data. On the other hand, we also encountered several challenges in the process of automating the registry, including limited IT support, limited expertise in matching data variables from RCCR and eHIntS, and limited availability and accessibility of eHIntS information for import into REDCap. In summary, despite these challenges, partial automation was achieved with the REDCap/OBIEE system, enhancing efficiency, data security, and data quality.
RESUMO
The transcription factor NF-E2 Related Factor-2 (NRF2) is an important drug target. Activation of NRF2 has chemopreventive effects in cancer and exerts beneficial effects in a number of diseases, including neurodegenerative diseases, inflammatory diseases, hepatosteatosis, obesity and insulin resistance. Hence, there have been great efforts to discover and characterize novel NRF2 activators. One reported NRF2 activator is the labdane diterpenoid andrographolide. In this study, we identified the mechanism through which andrographolide activates NRF2. We showed that andrographolide inhibits the function of KEAP1, a protein that together with CUL3 and RBX1 forms an E3 ubiquitin ligase that polyubiquitinates NRF2. Andrographolide partially inhibits the interaction of KEAP1 with CUL3 in a manner dependent on Cys151 in KEAP1. This suggests that andrographolide forms Michael acceptor dependent adducts with Cys151 in KEAP1 in vivo, leading to inhibition of NRF2 ubiquitination and consequently accumulation of the transcription factor. Interestingly, we also showed that at higher concentrations andrographolide increases NRF2 protein expression in a Cys151 independent, but likely KEAP1 dependent manner, possibly through modification of other Cys residues in KEAP1. In this study we also screened secondary metabolites produced by endophytes isolated from non-flowering plants for NRF2-inducing properties. One of the extracts, ORX 41, increased both NRF2 protein expression and transcriptional activity markedly. These results suggest that endophytes isolated from non-flowering or other plants may be a good source of novel NRF2 inducing compounds.
Assuntos
Proteínas Culina/metabolismo , Diterpenos/farmacologia , Endófitos/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Extratos Vegetais/farmacologia , Sítios de Ligação/efeitos dos fármacos , Briófitas/química , Proteínas de Transporte/metabolismo , Proteínas Culina/química , Diterpenos/química , Gleiquênias/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Fator 2 Relacionado a NF-E2 , Extratos Vegetais/química , Ligação Proteica/efeitos dos fármacos , Metabolismo Secundário , UbiquitinaçãoRESUMO
Cycle inhibiting factors (Cifs) are virulence proteins secreted by the type III secretion system of some Gram-negative pathogenic bacteria including Burkholderia pseudomallei. Cif is known to function to deamidate Nedd8, leading to inhibition of Cullin E3 ubiquitin ligases (CRL) and consequently induction of cell cycle arrest. Here we show that Cif can function as a potent activator of MAPK/ERK signaling without significant activation of other signaling pathways downstream of receptor tyrosine kinases. Importantly, we found that the ability of Cif to activate ERK is dependent on its deamidase activity, but independent of Cullin E3 ligase inhibition. This suggests that apart from Nedd8, other cellular targets of Cif-dependent deamidation exist. We provide evidence that the mechanism involved in Cif-mediated ERK activation is dependent on recruitment of the Grb2-SOS1 complex to the plasma membrane. Further investigation revealed that Cif appears to modify the phosphorylation status of SOS1 in a region containing the CDC25-H and proline-rich domains. It is known that prolonged Cullin E3 ligase inhibition leads to cellular apoptosis. Therefore, we hypothesize that ERK activation is an important mechanism to counter the pro-apoptotic effects of Cif. Indeed, we show that Cif dependent ERK activation promotes phosphorylation of the proapoptotic protein Bim, thereby potentially conferring a pro-survival signal. In summary, we identified a novel deamidation-dependent mechanism of action of the B. pseudomallei virulence factor Cif/CHBP to activate MAPK/ERK signaling. Our study demonstrates that bacterial proteins such as Cif can serve as useful molecular tools to uncover novel aspects of mammalian signaling pathways.
Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidade , Sistema de Sinalização das MAP Quinases , Melioidose/metabolismo , Melioidose/microbiologia , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Burkholderia pseudomallei/genética , Linhagem Celular , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Humanos , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteína SOS1/metabolismo , Fatores de Virulência/genética , Fosfatases cdc25/química , Fosfatases cdc25/metabolismoRESUMO
Cycle inhibiting factor (Cif) is produced by pathogenic intracellular bacteria and injected into the host cells via a type III secretion system. Cif is known to interfere with the eukaryotic cell cycle by inhibiting the function of cullin RING E3 ubiquitin ligases (CRLs). Cullin proteins form the scaffold protein of CRLs and are modified with the ubiquitin-like protein Nedd8, which exerts important conformational control required for CRL activity. Cif has recently been shown to catalyze the deamidation of Gln40 in Nedd8 to Glu. Here, we addressed how Nedd8 deamidation inhibits CRL activity. Our results indicate that Burkholderia pseudomallei Cif (also known as CHBP) inhibits the deconjugation of Nedd8 in vivo by inhibiting binding of the deneddylating COP9 signalosome (CSN) complex. We provide evidence that the reduced binding of CSN and the inhibition of CRL activity by Cif are due to interference with Nedd8-induced conformational control, which is dependent on the interaction between the Nedd8 hydrophobic patch and the cullin winged-helix B subdomain. Of note, mutation of Gln40 to Glu in ubiquitin, an additional target of Cif, inhibits the interaction between the hydrophobic surface of ubiquitin and the ubiquitin-binding protein p62/SQSTM1, showing conceptually that Cif activity can impair ubiquitin/ubiquitin-like protein non-covalent interactions. Our results also suggest that Cif may exert additional cellular effects by interfering with the association between ubiquitin and ubiquitin-binding proteins.