Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 65, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943128

RESUMO

BACKGROUND: Enterovirus 71 (EV-A71) causes Hand, Foot and Mouth Disease (HFMD) in children and has been associated with neurological complications. The molecular mechanisms involved in EV-A71 pathogenesis have remained elusive. METHODS: A siRNA screen in EV-A71 infected-motor neurons was performed targeting 112 genes involved in intracellular membrane trafficking, followed by validation of the top four hits using deconvoluted siRNA. Downstream approaches including viral entry by-pass, intracellular viral genome quantification by qPCR, Western blot analyses, and Luciferase reporter assays allowed determine the stage of the infection cycle the top candidate, RAB11A was involved in. Proximity ligation assay, co-immunoprecipitation and multiplex confocal imaging were employed to study interactions between viral components and RAB11A. Dominant negative and constitutively active RAB11A constructs were used to determine the importance of the protein's GTPase activity during EV-A71 infection. Mass spectrometry and protein interaction analyses were employed for the identification of RAB11A's host interacting partners during infection. RESULTS: Small GTPase RAB11A was identified as a novel pro-viral host factor during EV-A71 infection. RAB11A and RAB11B isoforms were interchangeably exploited by strains from major EV-A71 genogroups and by Coxsackievirus A16, another major causative agent of HFMD. We showed that RAB11A was not involved in viral entry, IRES-mediated protein translation, viral genome replication, and virus exit. RAB11A co-localized with replication organelles where it interacted with structural and non-structural viral components. Over-expression of dominant negative (S25N; GDP-bound) and constitutively active (Q70L; GTP-bound) RAB11A mutants had no effect on EV-A71 infection outcome, ruling out RAB11A's involvement in intracellular trafficking of viral or host components. Instead, decreased ratio of intracellular mature viral particles to viral RNA copies and increased VP0:VP2 ratio in siRAB11-treated cells supported a role in provirion maturation hallmarked by VP0 cleavage into VP2 and VP4. Finally, chaperones, not trafficking and transporter proteins, were found to be RAB11A's top interacting partners during EV-A71 infection. Among which, CCT8 subunit from the chaperone complex TRiC/CCT was further validated and shown to interact with viral structural proteins specifically, representing yet another novel pro-viral host factor during EV-A71 infection. CONCLUSIONS: This study describes a novel, unconventional role for RAB11A during viral infection where it participates in the complex process of virus morphogenesis by recruiting essential chaperone proteins.


Assuntos
Enterovirus Humano A , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Enterovirus Humano A/genética , Enterovirus Humano A/fisiologia , Enterovirus Humano A/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Replicação Viral
2.
EMBO Rep ; 22(6): e51777, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33871166

RESUMO

Enterovirus-A71 (EV-A71) has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD). EV-A71 infects motor neurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV-A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions. In mice infected with EV-A71, PRPH co-localizes with viral particles in the muscles at NMJs and in the spinal cord. In motor neuron-like and neuroblastoma cell lines, surface-expressed PRPH facilitates viral entry, while intracellular PRPH influences viral genome replication through interactions with structural and non-structural viral components. Importantly, PRPH does not play a role during infection with coxsackievirus A16, another causative agent of HFMD rarely associated with neurological complications, suggesting that EV-A71 ability to exploit PRPH represents a unique attribute for successful CNS invasion. Finally, we show that EV-A71 also exploits some of the many PRPH-interacting partners. Of these, small GTP-binding protein Rac1 represents a potential druggable host target to limit neuroinvasion of EV-A71.


Assuntos
Enterovirus Humano A , Enterovirus , Doença de Mão, Pé e Boca , Animais , Enterovirus Humano A/genética , Filamentos Intermediários , Camundongos , Periferinas , Medula Espinal
3.
Front Microbiol ; 13: 821976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369482

RESUMO

Enterovirus 71 (EV-A71) causes hand, foot, and mouth disease (HFMD) in children and has been associated with neurological complications. With no specific treatment and a monovalent vaccine limited to the Chinese market, HFMD remains a serious public health concern and an economic burden to affected societies. The molecular mechanisms underpinning EV-A71 neurovirulence have yet to be fully elucidated. In this work, we provide experimental evidence that a single amino acid substitution (I to K) at position 149 in structural protein VP2 of a non-mouse-adapted EV-A71 strain completely and specifically abrogated its infectivity in murine motor neuron-like NSC-34 cells. We showed that VP2 I149K mutant was impaired in murine SCARB2-mediated entry step but retained the ability to attach at the cell surface. In vivo, VP2 I149K mutant was fully attenuated in a symptomatic mouse model of progressive limb paralysis. While viral titers in limb muscles were comparable to mice infected with parental wild-type strain, significantly lower viral titers were measured in the spinal cord and brain, with minimal tissue damage, therefore indicating that VP2 I149K mutant is specifically impaired in its ability to invade the central nervous system (CNS). This study highlights the key role of amino acid at position 149 in VP2 in EV-A71 neurovirulence, and lends further support that the EF loop of VP2 represents a potential therapeutic target.

4.
Expert Opin Drug Discov ; 15(3): 359-371, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31470744

RESUMO

Introduction: Hand, foot and mouth disease (HFMD) is a serious public health concern in the Asia-Pacific region with recurrent cyclical outbreaks. Enterovirus 71 (EV-A71) and coxsackievirus type A are the main causative agents of HFMD. While majority of HFMD cases are mild and self-limiting, neurological complications have been reported for EV-A71 associated HFMD. There is currently no effective treatment against HFMD and monovalent vaccines against EV-A71 are currently limited to the Chinese market.Areas covered: As of today, HFMD antiviral development has focused on EV-A71 and involves conventional screening of drug libraries. In recent years, attention has shifted toward identifying druggable host factors to avoid drug resistance and identify drug candidates with broader antiviral activity across EV-A71 genogroups and other HFMD causative agents.Expert opinion: The effective development of HFMD interventions requires us to address the gaps in our understanding of its pathogenesis at the molecular level. The limited resources devoted to the development of HFMD treatment strategies worldwide also contribute to the slow progress of promising drug and vaccine candidates along the clinical pipeline.


Assuntos
Antivirais/farmacologia , Enterovirus Humano A/efeitos dos fármacos , Doença de Mão, Pé e Boca/tratamento farmacológico , Animais , Desenvolvimento de Medicamentos , Farmacorresistência Viral , Enterovirus Humano A/isolamento & purificação , Doença de Mão, Pé e Boca/virologia , Humanos , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA