Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G580-G591, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29953253

RESUMO

Infants with congenital diarrheal disorders caused by enteroendocrine cell dysgenesis, or the loss of intestinal endocrine cells, causes severe malabsorptive diarrhea, though the mechanism is not fully understood. The transcription factor "aristaless-related homeobox" (Arx) is specifically expressed in intestinal endocrine cells. This study seeks to characterize the early malabsorptive phenotype of mice deficient for Arx using cell-type specific gene ablation in Villin-Cre; ArxloxP/Y ( Arxint) mice. In neonatal mice, the loss of intestinal Arx caused the loss of intestinal hormones, such as cholecystokinin, secretin, neurotensin, glucose-dependent insulinotropic peptide, glucagon-like peptide (GLP)-1 and GLP-2 but also upregulation of somatostatin. Arxint mice exhibited steatorrhea with the loss of lipid transport in duodenal enterocytes, upregulation of lysozyme-positive Paneth cells, and a secondary increase in antimicrobial peptides, specifically Reg3ß. When the epithelium from Arxint mice was cultured ex vivo into enteroids, however, the Reg3ß upregulation was lost under the sterile conditions. Thus, Arx is required for the appropriate lineage allocation of multiple enteroendocrine subtypes. We concluded that altered hormonal signaling caused by Arx deficiency results in lipid malabsorption, premature Paneth cell differentiation, and an inflammatory response, including neutrophilic infiltrates and a microbiota-triggered upregulation of Reg3ß. NEW & NOTEWORTHY The enteroendocrine transcription factor aristaless-related homeobox (Arx) plays a key role in lineage specification. Changes in hormonal expression mediated by Arx lead to lipid malabsorption and premature Paneth cell development. Furthermore, global profiling of whole intestine from Arx-deficient mice revealed significant upregulation of antimicrobial peptides. This antimicrobial response in Arx-deficient animals is lost under sterile culture conditions of enteroids.


Assuntos
Diarreia/metabolismo , Hormônios Gastrointestinais/metabolismo , Microbioma Gastrointestinal , Intestino Delgado/metabolismo , Síndromes de Malabsorção/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Diarreia/congênito , Enterócitos/citologia , Enterócitos/metabolismo , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Intestino Delgado/citologia , Intestino Delgado/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Celulas de Paneth/citologia , Celulas de Paneth/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Mol Ther Methods Clin Dev ; 32(1): 101193, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352270

RESUMO

Friedreich's ataxia (FRDA) is an autosomal-recessive disorder primarily attributed to biallelic GAA repeat expansions that reduce expression of the mitochondrial protein frataxin (FXN). FRDA is characterized by progressive neurodegeneration, with many patients developing cardiomyopathy that progresses to heart failure and death. The potential to reverse or prevent progression of the cardiac phenotype of FRDA was investigated in a mouse model of FRDA, using an adeno-associated viral vector (AAV8) containing the coding sequence of the FXN gene. The Fxnflox/null::MCK-Cre conditional knockout mouse (FXN-MCK) has an FXN gene ablation that prevents FXN expression in cardiac and skeletal muscle, leading to cardiac insufficiency, weight loss, and morbidity. FXN-MCK mice received a single intravenous injection of an AAV8 vector containing human (hFXN) or mouse (mFXN) FXN genes under the control of a phosphoglycerate kinase promoter. Compared to vehicle-treated FXN-MCK control mice, AAV-treated FXN-MCK mice displayed increases in body weight, reversal of cardiac deficits, and increases in survival without apparent toxicity in the heart or liver for up to 12 weeks postdose. FXN protein expression in heart tissue was detected in a dose-dependent manner, exhibiting wide distribution throughout the heart similar to wild type, but more speckled. These results support an AAV8-based approach to treat FRDA-associated cardiomyopathy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA