Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nat Mater ; 23(1): 147-157, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872423

RESUMO

During wound healing and surgical implantation, the body establishes a delicate balance between immune activation to fight off infection and clear debris and immune tolerance to control reactivity against self-tissue. Nonetheless, how such a balance is achieved is not well understood. Here we describe that pro-regenerative biomaterials for muscle injury treatment promote the proliferation of a BATF3-dependent CD103+XCR1+CD206+CD301b+ dendritic cell population associated with cross-presentation and self-tolerance. Upregulation of E-cadherin, the ligand for CD103, and XCL-1 in injured tissue suggests a mechanism for cell recruitment to trauma. Muscle injury recruited natural killer cells that produced Xcl1 when stimulated with fragmented extracellular matrix. Without cross-presenting cells, T-cell activation increases, pro-regenerative macrophage polarization decreases and there are alterations in myogenesis, adipogenesis, fibrosis and increased muscle calcification. These results, previously observed in cancer progression, suggest a fundamental mechanism of immune regulation in trauma and material implantation with implications for both short- and long-term injury recovery.


Assuntos
Materiais Biocompatíveis , Células Dendríticas , Materiais Biocompatíveis/farmacologia
2.
Cells Tissues Organs ; 212(1): 84-95, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35462366

RESUMO

The rat model is an important resource in biomedical research due to its similarities to the human immune system and its use for functional studies. However, because of the preponderance of mouse models in foundational and mechanistic immunological studies, there is a relative lack of diverse, commercially available flow cytometry antibodies for immunological profiling in the rat model. Available antibodies are often conjugated to common fluorophores with similar peak emission wavelengths, making them hard to distinguish on conventional flow cytometers and restricting more comprehensive immune analysis. This can become a limitation when designing immunological studies in rat injury models to investigate the immune response to tissue injury. In addition, this lack of available antibodies limits the number of studies that can be done on the immune populations in lymphoid organs in other research areas. To address this critical unmet need, we designed a spectral flow cytometry panel for rat models. Spectral cytometry distinguishes between different fluorophores by capturing their full emission spectra instead of their peak emission wavelengths. This flow cytometry panel includes 24 distinct immune cell markers to analyze the innate and adaptive immune response. Importantly, this panel identifies different immune phenotypes, including tolerogenic, Type 1, and Type 2 immune responses. We show that this panel can identify unique immune populations and phenotypes in a rat muscle trauma model. We further validated that the panel can identify distinct adaptive and innate immune populations and their unique phenotypes in lymphoid organs. This panel expands the scope of previous rat panels providing a tool for scientists to examine the immune system in homeostasis and injury while pairing mechanistic immunological studies with functional studies.


Assuntos
Corantes Fluorescentes , Camundongos , Animais , Ratos , Humanos , Citometria de Fluxo , Biomarcadores , Fenótipo
3.
Adv Sci (Weinh) ; 11(11): e2306961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38192168

RESUMO

Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, the differences between the responses of MRL/MpJ versus C57BL/6 strain are evaluated in volumetric muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury is robust adipogenesis within the muscle. This is associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there are fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model can provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and material implantation.


Assuntos
Músculos , Cicatrização , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Modelos Animais de Doenças , Cicatrização/fisiologia , Mamíferos
4.
Acta Biomater ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879103

RESUMO

Upon implantation into a patient, any biomaterial induces a cascade of immune responses that influences the outcome of that device. This cascade depends upon several factors, including the composition of the material itself and the location in which the material is implanted. There is still significant uncertainty around the role of different tissue microenvironments in the immune response to biomaterials and how that may alter downstream scaffold remodeling and integration. In this study, we present a study evaluating the immune response to decellularized extracellular matrix materials within the intraperitoneal cavity, the subcutaneous space, and in a traumatic skeletal muscle injury microenvironment. All different locations induced robust cellular recruitment, specifically of macrophages and eosinophils. The latter was most prominent in the subcutaneous space. Intraperitoneal implants uniquely recruited B cells that may alter downstream reactivity as adaptive immunity has been strongly implicated in the outcome of scaffold remodeling. These data suggest that the location of tissue implants should be taken together with the composition of the material itself when designing devices for downline therapeutics. STATEMENT OF SIGNIFICANCE: Different tissue locations have unique immune microenvironments, which can influence the immune response to biomaterial implants. By considering the specific immune profiles of the target tissue, researchers can develop implant materials that promote better integration, reduce complications, and improve the overall outcome of the implantation process.

5.
J Biomed Mater Res A ; 111(6): 840-850, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36861434

RESUMO

Tissue clearing of whole intact organs has enhanced imaging by enabling the exploration of tissue structure at a subcellular level in three-dimensional space. Although clearing and imaging of the whole organ have been used to study tissue biology, the microenvironment in which cells evolve to adapt to biomaterial implants or allografts in the body is poorly understood. Obtaining high-resolution information from complex cell-biomaterial interactions with volumetric landscapes represents a key challenge in the fields of biomaterials and regenerative medicine. To provide a new approach to examine how tissue responds to biomaterial implants, we apply cleared tissue light-sheet microscopy and three-dimensional reconstruction to utilize the wealth of autofluorescence information for visualizing and contrasting anatomical structures. This study demonstrates the adaptability of the clearing and imaging technique to provide sub-cellular resolution (0.6 µm isotropic) 3D maps of various tissue types, using samples from fully intact peritoneal organs to volumetric muscle loss injury specimens. Specifically, in the volumetric muscle loss injury model, we provide 3D visualization of the implanted extracellular matrix biomaterial in the wound bed of the quadricep muscle groups and further apply computational-driven image classification to analyze the autofluorescence spectrum at multiple emission wavelengths to categorize tissue types at the injured site interacting with the biomaterial scaffolds.


Assuntos
Materiais Biocompatíveis , Microscopia , Microscopia/métodos , Matriz Extracelular , Aprendizado de Máquina , Imageamento Tridimensional/métodos
6.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37814705

RESUMO

Upon implantation into a patient, any biomaterial induces a cascade of immune responses that influences the outcome of that device. This cascade depends upon several factors, including the composition of the material itself and the location in which the material is implanted. There is still significant uncertainty around the role of different tissue microenvironments in the immune response to biomaterials and how that may alter downstream scaffold remodeling and integration. In this study, we present a study evaluating the immune response to decellularized extracellular matrix materials within the intraperitoneal cavity, the subcutaneous space, and in a traumatic skeletal muscle injury microenvironment. All different locations induced robust cellular recruitment, specifically of macrophages and eosinophils. The latter was most prominent in the subcutaneous space. Intraperitoneal implants uniquely recruited B cells that may alter downstream reactivity as adaptive immunity has been strongly implicated in the outcome of scaffold remodeling. These data suggest that the location of tissue implants should be taken together with the composition of the material itself when designing devices for downline therapeutics.

7.
bioRxiv ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986843

RESUMO

Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, we evaluated the differences between the responses of MRL/MpJ versus C57BL/6 strain in traumatic muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury was a robust adipogenesis within the muscle. This was associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there were fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model could provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and materials implantation.

8.
medRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904956

RESUMO

Due to a combination of asymptomatic or undiagnosed infections, the proportion of the United States population infected with SARS-CoV-2 was unclear from the beginning of the pandemic. We previously established a platform to screen for SARS-CoV-2 positivity across a representative proportion of the US population, from which we reported that almost 17 million Americans were estimated to have had undocumented infections in the Spring of 2020. Since then, vaccine rollout and prevalence of different SARS-CoV-2 variants have further altered seropositivity trends within the United States population. To explore the longitudinal impacts of the pandemic and vaccine responses on seropositivity, we re-enrolled participants from our baseline study in a 6- and 12- month follow-up study to develop a longitudinal antibody profile capable of representing seropositivity within the United States during a critical period just prior to and during the initiation of vaccine rollout. Initial measurements showed that, since July 2020, seropositivity elevated within this population from 4.8% at baseline to 36.2% and 89.3% at 6 and 12 months, respectively. We also evaluated nucleocapsid seropositivity and compared to spike seropositivity to identify trends in infection versus vaccination relative to baseline. These data serve as a window into a critical timeframe within the COVID-19 pandemic response and serve as a resource that could be used in subsequent respiratory illness outbreaks.

9.
Acta Biomater ; 133: 17-33, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33905946

RESUMO

Research on the foreign body response (FBR) to biomaterial implants has been focused on the roles that the innate immune system has on mediating tolerance or rejection of implants. However, the immune system also involves the adaptive immune response and it must be included in order to form a complete picture of the response to biomaterials and medical implants. In this review, we explore recent understanding about the roles of adaptive immune cells, specifically T cells, in modulating the immune response to biomaterial implants. The immune response to implants elicits a delicate balance between tissue repair and fibrosis that is mainly regulated by three types of T helper cell responses -T helper type 1, T helper type 2, and T helper type 17- and their crosstalk with innate immune cells. Interestingly, many T cell response mechanisms to implants overlap with the process of fibrosis or repair in different tissues. This review explores the fibrotic and regenerative T cell biology and draws parallels to T cell responses to biomaterials. Additionally, we also explore the biomedical engineering advancements in biomaterial applications in designing particle and scaffold systems to modulate T cell activity for therapeutics and devices. Not only do the deliberate engineering design of physical and chemical material properties and the direct genetic modulation of T cells not only offer insights to T cell biology, but they also present different platforms to develop immunomodulatory biomaterials. Thus, an in-depth understanding of T cells' roles can help to navigate the biomaterial-immune interactions and reconsider the long-lasting adaptive immune response to implants, which, in the end, contribute to the design of immunomodulatory medical implants that can advance the next generation of regenerative therapy. STATEMENT OF SIGNIFICANCE: This review article integrates knowledge of adaptive immune responses in tissue damage, wound healing, and medical device implantation. These three fields, often not discussed in conjunction, are important to consider when evaluating and designing biomaterials. Through incorporation of basic biological research alongside engineering research, we provide an important lens through which to evaluate adaptive immune contributions to regenerative medicine and medical device development.


Assuntos
Materiais Biocompatíveis , Corpos Estranhos , Imunidade Adaptativa , Fibrose , Humanos , Cicatrização
10.
medRxiv ; 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34401892

RESUMO

In comparison to the general patient population, trauma patients show higher level detections of bloodborne infectious diseases, such as Hepatitis and Human Immunodeficiency Virus. In comparison to bloodborne pathogens, the prevalence of respiratory infections such as SARS-CoV-2 and how that relates with other variables, such as drug usage and trauma type, is currently unknown in trauma populations. Here, we evaluated SARS-CoV-2 seropositivity and antibody isotype profile in 2,542 trauma patients from six Level-1 trauma centers between April and October of 2020 during the first wave of the COVID-19 pandemic. We found that the seroprevalence in trauma victims 18-44 years old (9.79%, 95% confidence interval/CI: 8.33 - 11.47) was much higher in comparison to older patients (45-69 years old: 6.03%, 4.59-5.88; 70+ years old: 4.33%, 2.54 - 7.20). Black/African American (9.54%, 7.77 - 11.65) and Hispanic/Latino patients (14.95%, 11.80 - 18.75) also had higher seroprevalence in comparison, respectively, to White (5.72%, 4.62 - 7.05) and Non-Latino patients (6.55%, 5.57 - 7.69). More than half (55.54%) of those tested for drug toxicology had at least one drug present in their system. Those that tested positive for narcotics or sedatives had a significant negative correlation with seropositivity, while those on anti-depressants trended positive. These findings represent an important consideration for both the patients and first responders that treat trauma patients facing potential risk of respiratory infectious diseases like SARS-CoV-2.

11.
ACS Biomater Sci Eng ; 6(12): 6819-6830, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320621

RESUMO

Hyaluronic acid (HA) is an abundant extracellular matrix (ECM) component in soft tissues throughout the body and has found wide adoption in tissue engineering. This study focuses on the optimization of methacrylated HA (MeHA) for three-dimensional (3D) bioprinting to create in vitro test beds that incorporate regeneration-promoting growth factors in neural repair processes. To evaluate MeHA as a potential bioink, rheological studies were performed with PC-12 cells to demonstrate shear thinning properties maintained when printing with and without cells. Next, an extrusion-based Cellink BIO X 3D printer was used to bioprint various MeHA solutions combined with collagen-I to determine which formulation was the most optimal for creating 3D features. Results indicated that MeHA (10 mg/mL) with collagen-I (3 mg/mL) was most suitable. As Schwann cells (SCs) are a critical component of neural repair and regeneration, SC adhesion assessment via integrin ß1 immunostaining indicated that the bioink candidate adequately supported SC adhesion and migration when compared to Col-I, a highly cell-adhesive ECM component. MeHA/collagen-I bioink was adapted for neural specific applications by printing with the neural growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). These test beds were conducive for SC infiltration and presented differential migration responses. Finally, a two-chamber in vitro test bed design was created to study competitive biochemical cues. Dorsal root ganglia were seeded in test beds and demonstrated directional neurite extension (measured by ß-III tubulin and GAP43 immunostaining) in response to NGF and GDNF. Overall, the selected MeHA/collagen-I bioink was bioprintable, improved cell viability compared to molded controls, and was conducive for cell adhesion, growth factor sequestration, and neural cell infiltration. MeHA is a suitable bioink candidate for extrusion-based bioprinting and will be useful in future development of spatially complex test beds to advance in vitro models as an alternative to common in vivo tests for neural repair applications.


Assuntos
Bioimpressão , Hidrogéis , Ácido Hialurônico , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA