Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 11(9): e2101898, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34694749

RESUMO

Disinfection using effective antimicrobials is essential in preventing the spread of infectious diseases. This COVID-19 pandemic has brought the need for effective disinfectants to greater attention due to the fast transmission of SARS-CoV-2. Current active ingredients in disinfectants are small molecules that microorganisms can develop resistance against after repeated long-term use and may penetrate the skin, causing harmful side-effects. To this end, a series of membrane-disrupting polyionenes that contain quaternary ammoniums and varying hydrophobic components is synthesized. They are effective against bacteria and fungi. They are also fast acting against clinically isolated drug resistant strains of bacteria. Formulating them with thickeners and nonionic surfactants do not affect their killing efficiency. These polyionenes are also effective in preventing infections caused by nonenveloped and enveloped viruses. Their effectiveness against mouse coronavirus (i.e., mouse hepatitis virus-MHV) depends on their hydrophobicity. The polyionenes with optimal compositions inactivates MHV completely in 30 s. More importantly, the polyionenes are effective in inhibiting SARS-CoV-2 by >99.999% within 30 s. While they are effective against the microorganisms, they do not cause damage to the skin and have a high oral lethal dose. Overall, these polyionenes are promising active ingredients for disinfection and prevention of viral and microbial infections.


Assuntos
Anti-Infecciosos , COVID-19 , Desinfetantes , Animais , Antibacterianos , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Bactérias , COVID-19/prevenção & controle , Desinfetantes/farmacologia , Humanos , Camundongos , Pandemias/prevenção & controle , Polímeros/farmacologia , SARS-CoV-2
2.
Protein Sci ; 28(3): 524-532, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30461091

RESUMO

Vaccinia-related kinase 1 (VRK1), a serine/threonine mitotic kinase, is widely over-expressed in dividing cells and regarded as a cancer drug target primarily due to its function as an early response gene in cell proliferation. However, the mechanism of VRK1 phosphorylation and substrate activation is not well understood. More importantly even the molecular basis of VRK1 interaction with its cofactor, adenosine triphosphate (ATP), is unavailable to-date. As designing specific inhibitors remains to be the major challenge in kinase research, such a molecular understanding will enable us to design ATP-competitive specific inhibitors of VRK1. Here we report the molecular characterization of VRK1 in complex with AMP-PNP, a non-hydrolyzable ATP-analog, using NMR titration followed by the co-crystal structure determined upto 2.07 Å resolution. We also carried out the structural comparison of the AMP-PNP bound-form with its apo and inhibitor-bound counterparts, which has enabled us to present our rationale toward designing VRK1-specific inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Adenilil Imidodifosfato/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Conformação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA