Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 320(4): R471-R487, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470901

RESUMO

Previous studies indicate that oxytocin (OT) administration reduces body weight in high-fat diet (HFD)-induced obese (DIO) rodents through both reductions in food intake and increases in energy expenditure. We recently demonstrated that chronic hindbrain [fourth ventricular (4V)] infusions of OT evoke weight loss in DIO rats. Based on these findings, we hypothesized that chronic 4V OT would elicit weight loss in DIO mice. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle over 28 days on body weight, food intake, and body composition. OT reduced body weight by approximately 4.5% ± 1.4% in DIO mice relative to OT pretreatment body weight (P < 0.05). These effects were associated with reduced adiposity and adipocyte size [inguinal white adipose tissue (IWAT)] (P < 0.05) and attributed, in part, to reduced energy intake (P < 0.05) at a dose that did not increase kaolin intake (P = NS). OT tended to increase uncoupling protein-1 expression in IWAT (0.05 < P < 0.1) suggesting that OT stimulates browning of WAT. To assess OT-elicited changes in brown adipose tissue (BAT) thermogenesis, we examined the effects of 4V OT on interscapular BAT temperature (TIBAT). 4V OT (1 µg) elevated TIBAT at 0.75 (P = 0.08), 1, and 1.25 h (P < 0.05) postinjection; a higher dose (5 µg) elevated TIBAT at 0.75-, 1-, 1.25-, 1.5-, 1.75- (P < 0.05), and 2-h (0.05 < P < 0.1) postinjection. Together, these findings support the hypothesis that chronic hindbrain OT treatment evokes sustained weight loss in DIO mice by reducing energy intake and increasing BAT thermogenesis at a dose that is not associated with evidence of visceral illness.


Assuntos
Fármacos Antiobesidade/administração & dosagem , Dieta Hiperlipídica , Obesidade/tratamento farmacológico , Ocitocina/administração & dosagem , Rombencéfalo/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Marrons/patologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adipócitos Brancos/patologia , Adiposidade/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Infusões Intraventriculares , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Rombencéfalo/fisiopatologia , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
2.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854021

RESUMO

Previous studies indicate that CNS administration of oxytocin (OT) reduces body weight in high fat diet-induced obese (DIO) rodents by reducing food intake and increasing energy expenditure (EE). We recently demonstrated that hindbrain (fourth ventricular [4V]) administration of OT elicits weight loss and elevates interscapular brown adipose tissue temperature (T IBAT , a surrogate measure of increased EE) in DIO mice. What remains unclear is whether OT-elicited weight loss requires increased sympathetic nervous system (SNS) outflow to IBAT. We hypothesized that OT-induced stimulation of SNS outflow to IBAT contributes to its ability to activate BAT and elicit weight loss in DIO mice. To test this hypothesis, we determined the effect of disrupting SNS activation of IBAT on the ability of 4V OT administration to increase T IBAT and elicit weight loss in DIO mice. We first determined whether bilateral surgical SNS denervation to IBAT was successful as noted by ≥ 60% reduction in IBAT norepinephrine (NE) content in DIO mice. NE content was selectively reduced in IBAT at 1-, 6- and 7-weeks post-denervation by 95.9±2.0, 77.4±12.7 and 93.6±4.6% ( P <0.05), respectively and was unchanged in inguinal white adipose tissue, pancreas or liver. We subsequently measured the effects of acute 4V OT (1, 5 µg ≈ 0.99, 4.96 nmol) on T IBAT in DIO mice following sham or bilateral surgical SNS denervation to IBAT. We found that the high dose of 4V OT (5 µg ≈ 4.96 nmol) elevated T IBAT similarly in sham mice as in denervated mice. We subsequently measured the effects of chronic 4V OT (16 nmol/day over 29 days) or vehicle infusions on body weight, adiposity and food intake in DIO mice following sham or bilateral surgical denervation of IBAT. Chronic 4V OT reduced body weight by 5.7±2.23% and 6.6±1.4% in sham and denervated mice ( P <0.05), respectively, and this effect was similar between groups ( P =NS). OT produced corresponding reductions in whole body fat mass ( P <0.05). Together, these findings support the hypothesis that sympathetic innervation of IBAT is not necessary for OT-elicited increases in BAT thermogenesis and reductions of body weight and adiposity in male DIO mice.

3.
Eur Rev Med Pharmacol Sci ; 27(8): 3489-3499, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140298

RESUMO

OBJECTIVE: This retrospective study evaluated the diagnostic efficacy of magnetic resonance imaging (MRI) for identifying acute appendicitis during pregnancy. PATIENTS AND METHODS: This retrospective study enrolled a total of 46 pregnant patients with clinically suspected acute appendicitis who underwent 1.5 T MRI and received a final pathological diagnosis. We evaluated the imaging characteristics associated with patients diagnosed with acute appendicitis, including the appendix diameter, the appendix wall thickness, intra-appendiceal fluid collection, and peri-appendiceal fat infiltration. A bright appendix on T1-weighted 3-dimensional imaging was identified as a negative sign for appendicitis. RESULTS: Peri-appendiceal fat infiltration had the highest specificity of 97.1% for diagnosing acute appendicitis, whereas increasing appendiceal diameter had the highest sensitivity of 91.7%. The cut-off values for increasing appendiceal diameter and appendiceal wall thickness were 6.55 mm and 2.7 mm, respectively. Using these cut-off values, appendiceal diameter had a sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV) of 91.7%, 91.2%, 78.4%, and 96.9%, respectively, whereas these values for appendiceal wall thickness were 75.0%, 91.2%, 75.0%, and 91.2%. The combination of increasing appendiceal diameter and appendiceal wall thickness resulted in an area under the receiver operating characteristic curve value of 0.958 with Se, Sp, PPV, and NPV values of 75.0%, 100.0%, 100.0%, and 91.9%, respectively. CONCLUSIONS: All five MRI signs examined in this study had significant diagnostic value for detecting acute appendicitis during pregnancy, with p-values <0.01. The combined use of increasing appendiceal diameter and appendiceal wall thickness displayed the excellent ability to diagnose acute appendicitis in pregnant women.


Assuntos
Apendicite , Humanos , Feminino , Gravidez , Apendicite/diagnóstico por imagem , Apendicite/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Diagnóstico Diferencial , Imageamento por Ressonância Magnética/métodos , Doença Aguda
4.
Front Physiol ; 12: 725912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566687

RESUMO

Previous studies have indicated that oxytocin (OT) reduces body weight in diet-induced obese (DIO) rodents through reductions in energy intake and increases in energy expenditure. We recently demonstrated that hindbrain [fourth ventricular (4V)] administration of OT evokes weight loss and elevates interscapular brown adipose tissue temperature (T IBAT ) in DIO rats. What remains unclear is whether OT can be used as an adjunct with other drugs that directly target beta-3 receptors in IBAT to promote BAT thermogenesis and reduce body weight in DIO rats. We hypothesized that the combined treatment of OT and the beta-3 agonist, CL 316243, would produce an additive effect to decrease body weight and adiposity in DIO rats by reducing energy intake and increasing BAT thermogenesis. We assessed the effects of 4V infusions of OT (16 nmol/day) or vehicle (VEH) in combination with daily intraperitoneal injections of CL 316243 (0.5 mg/kg) or VEH on food intake, T IBAT , body weight and body composition. OT and CL 316243 alone reduced body weight by 7.8 ± 1.3% (P < 0.05) and 9.1 ± 2.1% (P < 0.05), respectively, but the combined treatment produced more pronounced weight loss (15.5 ± 1.2%; P < 0.05) than either treatment alone. These effects were associated with decreased adiposity, adipocyte size, energy intake and increased uncoupling protein 1 (UCP-1) content in epididymal white adipose tissue (EWAT) (P < 0.05). In addition, CL 316243 alone (P < 0.05) and in combination with OT (P < 0.05) elevated T IBAT and IBAT UCP-1 content and IBAT thermogenic gene expression. These findings are consistent with the hypothesis that the combined treatment of OT and the beta-3 agonist, CL 316243, produces an additive effect to decrease body weight. The findings from the current study suggest that the effects of the combined treatment on energy intake, fat mass, adipocyte size and browning of EWAT were not additive and appear to be driven, in part, by transient changes in energy intake in response to OT or CL 316243 alone as well as CL 316243-elicited reduction of fat mass and adipocyte size and induction of browning of EWAT.

5.
J Clin Med ; 10(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34768597

RESUMO

Existing studies show that CNS oxytocin (OT) signaling is important in the control of energy balance, but it is unclear which neurons may contribute to these effects. Our goals were to examine (1) the dose-response effects of acute OT administration into the third (3V; forebrain) and fourth (4V; hindbrain) ventricles to assess sensitivity to OT in forebrain and hindbrain sites, (2) the extent to which chronic 4V administration of OT reduces weight gain associated with the progression of diet-induced obesity, and (3) whether nucleus tractus solitarius (NTS) catecholamine neurons are downstream targets of 4V OT. Initially, we examined the dose-response effects of 3V and 4V OT (0.04, 0.2, 1, or 5 µg). 3V and 4V OT (5 µg) suppressed 0.5-h food intake by 71.7 ± 6.0% and 60 ± 12.9%, respectively. 4V OT (0.04, 0.2, 1 µg) reduced food intake by 30.9 ± 12.9, 42.1 ± 9.4, and 56.4 ± 9.0%, respectively, whereas 3V administration of OT (1 µg) was only effective at reducing 0.5-h food intake by 38.3 ± 10.9%. We subsequently found that chronic 4V OT infusion, as with chronic 3V infusion, reduced body weight gain (specific to fat mass) and tended to reduce plasma leptin in high-fat diet (HFD)-fed rats, in part, through a reduction in energy intake. Lastly, we determined that 4V OT increased the number of hindbrain caudal NTS Fos (+) neurons (156 ± 25) relative to vehicle (12 ± 3). The 4V OT also induced Fos in tyrosine hydroxylase (TH; marker of catecholamine neurons) (+) neurons (25 ± 7%) relative to vehicle (0.8 ± 0.3%). Collectively, these findings support the hypothesis that OT within the hindbrain is effective at reducing food intake, weight gain, and adiposity and that NTS catecholamine neurons in addition to non-catecholaminergic neurons are downstream targets of CNS OT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA