Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 42(10): 1229-1238, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34233069

RESUMO

Accurate profiling of population-specific recessive diseases is essential for the design of cost-effective carrier screening programs. However, minority populations and ethnic groups, including Vietnamese, are still underrepresented in existing genetic studies. Here, we reported the first comprehensive study of recessive diseases in the Vietnamese population. Clinical exome sequencing data of 4503 disease-associated genes obtained from a cohort of 985 Vietnamese individuals was analyzed to identify pathogenic variants, associated diseases and their carrier frequencies in the population. A total of 118 recessive diseases associated with 164 pathogenic or likely pathogenic variants were identified, among which 28 diseases had carrier frequencies of at least 1% (1 in 100 individuals). Three diseases were prevalent in the Vietnamese population with carrier frequencies of 2-12 times higher than in the world populations, including beta-thalassemia (1 in 23), citrin deficiency (1 in 31), and phenylketonuria (1 in 40). Seven novel pathogenic and two likely pathogenic variants associated with nine recessive diseases were discovered. The comprehensive profile of recessive diseases identified in this study enables the design of cost-effective carrier screening programs specific to the Vietnamese population.


Assuntos
Etnicidade , Exoma , Povo Asiático , Estudos de Coortes , Exoma/genética , Humanos , Sequenciamento do Exoma
2.
Medicine (Baltimore) ; 101(25): e29476, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758383

RESUMO

RATIONALE: Congenital bile acid synthesis defect (BASD) is a rare disease caused by mutations in the aldo-keto reductase 1D1 gene, which encodes the primary Δ4-3-oxosteroid 5ß-reductase enzyme. Early disease diagnosis is critical for early treatment with bile acid replacement therapy, with an excellent chance for recovery. In contrast, protracted diagnosis and treatment may lead to poor outcomes, including decompensated hepatic cirrhosis, liver transplant, and even death. PATIENT CONCERNS: Three clinical congenital bile acid synthesis defect cases in the Vietnamese population are herein reported. These pediatric patients presented with symptoms of prolonged postpartum jaundice and abnormal loose stool (mucus, lipids, and white). The clinical examinations showed hepatosplenomegaly. Urinalysis showed a very low fraction of primary bile acids and atypical 3-oxo-Δ4- bile acids in all three patients. DIAGNOSES: The patients were diagnosed with primary Δ4-3-oxosteroid 5ß-reductase deficiency. Next-generation gene sequencing revealed two homozygous mutations in the aldo-keto reductase family 1 member D1 gene. The first is a documented variant, c.797G>A (p.Arg266Gln), and the second is a novel mutation at c.155T>C (p.Ile52Thr). INTERVENTIONS: Immediately after diagnosis, patients were treated with oral chenodeoxycholate 5 mg/kg/d. OUTCOMES: The patients' symptoms, signs, and primary bile acids levels improved significantly. LESSONS: Clinicians should consider genetic disorders related to cholestasis for effective and life-saving treatment. A prompt genetic analysis by next-generation gene sequencing enables patients to access bile acid replacement therapy earlier, significantly improving short- and long-term outcomes.


Assuntos
Ácidos e Sais Biliares , Ácido Quenodesoxicólico , Criança , Feminino , Humanos , Cetosteroides , Mutação , Oxirredutases
3.
Front Oncol ; 10: 1351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850431

RESUMO

Population-specific profiling of mutations in cancer genes is of critical importance for the understanding of cancer biology in general as well as the establishment of optimal diagnostics and treatment guidelines for that particular population. Although genetic analysis of tumor tissue is often used to detect mutations in cancer genes, the invasiveness and limited accessibility hinders its application in large-scale population studies. Here, we used ultra-deep massive parallel sequencing of plasma cell free DNA (cfDNA) to identify the mutation profiles of 265 Vietnamese patients with advanced non-small cell lung cancer (NSCLC). Compared to a cohort of advanced NSCLC patients characterized by sequencing of tissue samples, cfDNA genomic testing, despite lower mutation detection rates, was able to detect major mutations in tested driver genes that reflected similar mutation composition and distribution pattern, as well as major associations between mutation prevalence and clinical features. In conclusion, ultra-deep sequencing of plasma cfDNA represents an alternative approach for population-wide genetic profiling of cancer genes where recruitment of patients is limited to the accessibility of tumor tissue site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA