Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34450962

RESUMO

In wireless rechargeable sensor networks (WRSNs), a mobile charger (MC) moves around to compensate for sensor nodes' energy via a wireless medium. In such a context, designing a charging strategy that optimally prolongs the network lifetime is challenging. This work aims to solve the challenges by introducing a novel, on-demand charging algorithm for MC that attempts to maximize the network lifetime, where the term "network lifetime" is defined by the interval from when the network starts till the first target is not monitored by any sensor. The algorithm, named Fuzzy Q-charging, optimizes both the time and location in which the MC performs its charging tasks. Fuzzy Q-charging uses Fuzzy logic to determine the optimal charging-energy amounts for sensors. From that, we propose a method to find the optimal charging time at each charging location. Fuzzy Q-charging leverages Q-learning to determine the next charging location for maximizing the network lifetime. To this end, Q-charging prioritizes the sensor nodes following their roles and selects a suitable charging location where MC provides sufficient power for the prioritized sensors. We have extensively evaluated the effectiveness of Fuzzy Q-charging in comparison to the related works. The evaluation results show that Fuzzy Q-charging outperforms the others. First, Fuzzy Q-charging can guarantee an infinite lifetime in the WSRNs, which have a sufficient large sensor number or a commensurate target number. Second, in other cases, Fuzzy Q-charging can extend the time until the first target is not monitored by 6.8 times on average and 33.9 times in the best case, compared to existing algorithms.


Assuntos
Redes de Comunicação de Computadores , Lógica Fuzzy , Algoritmos , Tecnologia sem Fio
2.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354162

RESUMO

In wireless sensor networks (WSNs) with holes, designing efficient routing protocols, which prolong the network lifetime, is one of the most critical issues. To this end, this paper proposes a new geographic routing protocol for WSNs named the load Balanced and constant Stretch protocol for bypassing Multiple Holes (i.e., BSMH). In contrast to the existing works in the literature, the design of BSMH simultaneously takes into account the three factors that impacted the network lifetime, including routing path length, control packet overhead, and load balance among the nodes. Moreover, BSMH aims at minimizing the routing path length and the control overhead, while maximizing the load balance. We theoretically prove the efficiency of BSMH and extensively evaluate BSMH against the state-of-the-art protocols. The evaluation results show that the proposed protocol outperforms the others in various investigated metrics, not only network lifetime, but also routing path stretch, load balance, and control overhead. Specifically, BSMH prolongs the network lifetime by 30 % compared to the existing protocols while guaranteeing that the routing path stretch is under 1 . 3 .

3.
PLoS One ; 18(9): e0291865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768910

RESUMO

Due to the significant resemblance in visual appearance, pill misuse is prevalent and has become a critical issue, responsible for one-third of all deaths worldwide. Pill identification, thus, is a crucial concern that needs to be investigated thoroughly. Recently, several attempts have been made to exploit deep learning to tackle the pill identification problem. However, most published works consider only single-pill identification and fail to distinguish hard samples with identical appearances. Also, most existing pill image datasets only feature single pill images captured in carefully controlled environments under ideal lighting conditions and clean backgrounds. In this work, we are the first to tackle the multi-pill detection problem in real-world settings, aiming at localizing and identifying pills captured by users during pill intake. Moreover, we also introduce a multi-pill image dataset taken in unconstrained conditions. To handle hard samples, we propose a novel method for constructing heterogeneous a priori graphs incorporating three forms of inter-pill relationships, including co-occurrence likelihood, relative size, and visual semantic correlation. We then offer a framework for integrating a priori with pills' visual features to enhance detection accuracy. Our experimental results have proved the robustness, reliability, and explainability of the proposed framework. Experimentally, it outperforms all detection benchmarks in terms of all evaluation metrics. Specifically, our proposed framework improves COCO mAP metrics by 9.4% over Faster R-CNN and 12.0% compared to vanilla YOLOv5. Our study opens up new opportunities for protecting patients from medication errors using an AI-based pill identification solution.


Assuntos
Benchmarking , Ambiente Controlado , Humanos , Reprodutibilidade dos Testes , Iluminação , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA