Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1292: 27-35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30838541

RESUMO

Inactivating mutations of the CYP21A2 gene, encoding for steroid synthesis, have been reported in patients with congenital adrenal hyperplasia (CAH). We report a case of an infant who were diagnosed with CAH and presented with the severe phenotype of CAH with symptoms such as increased testicular volume, elevated of 17-hydroxyprogesteron, testosterone and progesterone. In this study, we established an assay for the detection of unusual genetic in the CYP21A2 gene in the proband and his family. A novel nonsense mutation c.374C > G which caused a substitutions of Serine for a stop codon at codon 125 (p.S125*) within exon 3 was found in the proband. Parental genotype studies confirmed carrier state in the father, but the mother showed a wild allele by PCR and sequencing. This inspired us to find deletions using multiplex ligation-dependent probe amplification (MLPA) technique. The probands were found to have a large deletion in exons 1 and 3, while the mother only had deletion in exon 1. Therefore, mutation c.374C > G (p.S125*) in the proband is considered as a heterozygous deletion. This mutation caused a truncated protein which lead to the salt wasting CAH phenotype of the proband. This novel nonsense mutation expands the CYP21A2 mutation spectrum in CAH disorder. This case also highlights the need of caution when interpreting results of molecular genetic testing during genetic counseling.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Povo Asiático/genética , Códon sem Sentido/genética , Mutação , Esteroide 21-Hidroxilase/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Pais , Vietnã
2.
PLoS One ; 18(5): e0286140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224116

RESUMO

Rice is the second-most important primary crop in the world and one of the most susceptible crops to salt stress. Soil salinization hinders seedling growth and decreases crop yield by inducing ionic and osmotic imbalances, photosynthesis disturbances, cell wall alterations, and gene expression inhibition. Plants have developed a range of defense mechanisms to adapt to salt stress. One of the most effective means is to make use of plant microRNAs (miRNAs) as post-transcriptional regulators to regulate the expression of developmental genes in order to mitigate the detrimental effects of salt stress. In this study, the miRNA sequencing data between two contrasting rice cultivars, salt-tolerant Doc Phung (DP) and salt-sensitive IR28 seedlings, were compared under control and salt stress (150 mM NaCl) conditions to determine the salt stress-responsive miRNAs. Comparative analysis of miRNA sequencing data detected a total of 69 differentially expressed miRNAs in response to salt stress treatment. Among them, 18 miRNAs from 13 gene families, MIR156, MIR164, MIR167, MIR168, MIR171, MIR396, MIR398, MIR1432, MIR1846, MIR1857, MIR1861, MIR3979, and MIR5508, were identified to be specifically and significantly expressed in the shoot and root tissues of DP seedlings. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses further revealed that these detected miRNAs regulate a range of essential biological and stress response processes, including gene transcription, osmotic homeostasis, root formation, ROS scavenger synthesis, and auxin and abscisic acid signaling pathways. Our findings provide more insight into the miRNA-mediated responsive mechanisms of rice under salt stress and should benefit the improvement of salt stress tolerance in rice.


Assuntos
MicroRNAs , Oryza , Oryza/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Plantas Geneticamente Modificadas , Estresse Salino/genética
3.
3 Biotech ; 13(12): 416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38009164

RESUMO

In this study, strain DM10 was isolated from mangrove roots and characterized as a halotolerant plant growth-promoting bacterium. Strain DM10 exhibited the ability to solubilize phosphate, produce siderophore, show 1-aminocyclopropane-1-carboxylic acid deaminase activity, and hydrolyze starch. The rice plants subjected to a treatment of NaCl (200 mM) and inoculated with strain DM10 showed an improvement in the shoot length, root length, and dried weight, when compared to those exposed solely to saline treatment. The comprehensive genome sequencing of strain DM10 revealed a genome spanning of 4,171,745 bp, harboring 3626 protein coding sequences. Within its genome, strain DM10 possesses genes responsible for both salt-in and salt-out strategies, indicative of a robust genetic adaptation aimed at fostering salt tolerance. Additionally, the genome encodes genes involved in phosphate solubilization, such as the synthesis of gluconic acid, high-affinity phosphate transport systems, and alkaline phosphatase. In the genome of DM10, we identified the acdS gene, responsible for encoding 1-aminocyclopropane-1-carboxylate deaminase, as well as the amy1A gene, which encodes α-amylase. Furthermore, the genome of DM10 contains sequences associated with the iron (3+)-hydroxamate and iron uptake clusters, responsible for siderophore production. Such data provide a deep understanding of the mechanism employed by strain DM10 to combat osmotic and salinity stress, facilitate plant growth, and elucidate its molecular-level behaviors.

4.
Microbiol Resour Announc ; 11(7): e0040422, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35674436

RESUMO

Marinobacter sp. strain C7 was isolated from seawater collected on the Con Bung coast, Vietnam. Here, we report a draft genome sequence of strain C7 consisting of 4,057,300 bp with 59.2% GC content and 109 contigs. The genome sequence of strain C7 provides an overview of its halophilic properties.

5.
Case Rep Genet ; 2017: 2357282, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392951

RESUMO

Congenital nephrotic syndrome, a rare and severe disease, is inherited as an autosomal recessive trait. The disease manifests shortly after birth and occurs predominantly in families of Finnish origin but has now been observed in all countries and races. Mutations in the NPHS1 gene, which encodes nephrin, are the main causes of congenital nephrotic syndrome in patients. In this study, we report the first mutational analysis of the NPHS1 gene in three unrelated children from three different Vietnamese families. These patients were examined and determined to be suffering from congenital nephrotic syndrome in the Department of Pediatrics, Vietnam National Hospital of Pediatrics. All 29 exons and exon-intron boundaries of NPHS1 were analyzed by PCR and DNA sequencing. Genetic analysis of the NPHS1 gene revealed one compound heterozygous variant p.Glu117Lys, one heterozygous missense mutation p.Asp310Asn, and one heterozygous frame-shifting mutation (c.3250_3251insG causing p.Val1084Glyfs⁎12) in patient 1. In patient 2, one heterozygous variant p.Glu117Lys and one novel heterozygous missense mutation p.Ser324Ala were identified. Finally, a novel missense mutation p.Arg802Leu and a novel nonsense mutation (c.2442C>G causing p.K792⁎) were identified in patient 3.

6.
Gene ; 565(2): 291-4, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25913739

RESUMO

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease which is characterized by a deficiency of one of the enzymes involved in the synthesis of cortisol from cholesterol by the adrenal cortex. CAH cases arising from impaired 11ß-hydroxylase are the second most common form. Mutations in the CYP11B1 gene are the cause of 11ß-hydroxylase deficiency. This study was performed on a patient with congenital adrenal hyperplasia and with premature development such as enlarged penis, muscle development, high blood pressure, and bone age equivalent of 5 years old at 2 years of chronological age. Biochemical tests for steroids confirmed the diagnosis of CAH. We used PCR and sequencing to screen for mutations in CYP11B1 gene. Results showed that the patient has a novel homozygous mutation of guanine (G) to thymine (T) in intron 6 (IVS6+5G>T). The analysis of this mutation by MaxEntScan boundary software indicated that this mutant could affect the gene splicing during transcription.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Povo Asiático/genética , Mutação/genética , Esteroide 11-beta-Hidroxilase/genética , Hiperplasia Suprarrenal Congênita/metabolismo , Guanina/metabolismo , Homozigoto , Humanos , Íntrons/genética , Masculino , Timina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA