Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Digit Imaging ; 35(2): 213-225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064369

RESUMO

Degenerative changes of the spine can cause spinal misalignment, with part of the spine arching beyond normal limits or moving in an incorrect direction, potentially resulting in back pain and significantly limiting a person's mobility. The most important parameters related to spinal misalignment include pelvic incidence, pelvic tilt, lumbar lordosis, thoracic kyphosis, and cervical lordosis. As a general rule, alignment of the spine for diagnosis and surgical treatment is estimated based on geometrical parameters measured manually by experienced doctors. However, these measurements consume the time and effort of experts to perform repetitive tasks that could be automated, especially with the powerful support of current artificial intelligence techniques. This paper focuses on creation of a decentralized convolutional neural network to precisely measure 12 spinal alignment parameters. Specifically, this method is based on detecting regions of interest with its dimensions that decrease by three orders of magnitude to focus on the necessary region to provide the output as key points. Using these key points, parameters representing spinal alignment are calculated. The quality of the method's performance, which is the consistency of the measurement results with manual measurement, is validated by 30 test cases and shows 10 of 12 parameters with a correlation coefficient > 0.8, with pelvic tilt having the smallest absolute deviation of 1.156°.


Assuntos
Lordose , Inteligência Artificial , Humanos , Lordose/diagnóstico por imagem , Lordose/cirurgia , Redes Neurais de Computação , Radiografia , Coluna Vertebral/diagnóstico por imagem
2.
Bioengineering (Basel) ; 10(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37892899

RESUMO

It is very important to keep track of decreases in the bone mineral density (BMD) of elderly people since it can be correlated with the risk of incidence of major osteoporotic fractures leading to fatal injuries. Even though dual-energy X-ray absorptiometry (DXA) is the one of the most precise measuring techniques used to quantify BMD, most patients have restricted access to this machine due to high cost of DXA equipment, which is also rarely distributed to local clinics. Meanwhile, the conventional X-rays, which are commonly used for visualizing conditions and injuries due to their low cost, combine the absorption of both soft and bone tissues, consequently limiting its ability to measure BMD. Therefore, we have proposed a specialized automated smart system to quantitatively predict BMD based on a conventional X-ray image only by reducing the soft tissue effect supported by the implementation of a convolutional autoencoder, which is trained using proposed synthesized data to generate grayscale values of bone tissue alone. From the enhanced image, multiple features are calculated from the hip X-ray to predict the BMD values. The performance of the proposed method has been validated through comparison with the DXA value, which shows high consistency with correlation coefficient of 0.81 and mean absolute error of 0.069 g/cm2.

3.
Bioengineering (Basel) ; 10(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892966

RESUMO

This study delves into the application of convolutional neural networks (CNNs) in evaluating spinal sagittal alignment, introducing the innovative concept of incidence angles of inflection points (IAIPs) as intuitive parameters to capture the interplay between pelvic and spinal alignment. Pioneering the fusion of IAIPs with machine learning for sagittal alignment analysis, this research scrutinized whole-spine lateral radiographs from hundreds of patients who visited a single institution, utilizing high-quality images for parameter assessments. Noteworthy findings revealed robust success rates for certain parameters, including pelvic and C2 incidence angles, but comparatively lower rates for sacral slope and L1 incidence. The proposed CNN-based machine learning method demonstrated remarkable efficiency, achieving an impressive 80 percent detection rate for various spinal angles, such as lumbar lordosis and thoracic kyphosis, with a precise error threshold of 3.5°. Further bolstering the study's credibility, measurements derived from the novel formula closely aligned with those directly extracted from the CNN model. In conclusion, this research underscores the utility of the CNN-based deep learning algorithm in delivering precise measurements of spinal sagittal parameters, and highlights the potential for integrating machine learning with the IAIP concept for comprehensive data accumulation in the domain of sagittal spinal alignment analysis, thus advancing our understanding of spinal health.

4.
Bioengineering (Basel) ; 10(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002450

RESUMO

In contemporary practice, intraoral scans and cone-beam computed tomography (CBCT) are widely adopted techniques for tooth localization and the acquisition of comprehensive three-dimensional models. Despite their utility, each dataset presents inherent merits and limitations, prompting the pursuit of an amalgamated solution for optimization. Thus, this research introduces a novel 3D registration approach aimed at harmonizing these distinct datasets to offer a holistic perspective. In the pre-processing phase, a retrained Mask-RCNN is deployed on both sagittal and panoramic projections to partition upper and lower teeth from the encompassing CBCT raw data. Simultaneously, a chromatic classification model is proposed for segregating gingival tissue from tooth structures in intraoral scan data. Subsequently, the segregated datasets are aligned based on dental crowns, employing the robust RANSAC and ICP algorithms. To assess the proposed methodology's efficacy, the Euclidean distance between corresponding points is statistically evaluated. Additionally, dental experts, including two orthodontists and an experienced general dentist, evaluate the clinical potential by measuring distances between landmarks on tooth surfaces. The computed error in corresponding point distances between intraoral scan data and CBCT data in the automatically registered datasets utilizing the proposed technique is quantified at 0.234 ± 0.019 mm, which is significantly below the 0.3 mm CBCT voxel size. Moreover, the average measurement discrepancy among expert-identified landmarks ranges from 0.368 to 1.079 mm, underscoring the promise of the proposed method.

5.
Comput Methods Programs Biomed ; 226: 107123, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156440

RESUMO

BACKGROUND AND OBJECTIVES: Analyzing three-dimensional cone beam computed tomography (CBCT) images has become an indispensable procedure for diagnosis and treatment planning of orthodontic patients. Artificial intelligence, especially deep-learning techniques for analyzing image data, shows great potential for medical and dental image analysis and diagnosis. To explore the feasibility of automating measurement of 13 geometric parameters from three-dimensional cone beam computed tomography images taken in natural head position (NHP), this study proposed a smart system that combined a facial profile analysis algorithm with deep-learning models. MATERIALS AND METHODS: Using multiple views extracted from the cone beam computed tomography data of 170 cases as a dataset, our proposed method automatically calculated 13 dental parameters by partitioning, detecting regions of interest, and extracting the facial profile. Subsequently, Mask-RCNN, a trained decentralized convolutional neural network was applied to detect 23 landmarks. All the techniques were integrated into a software application with a graphical user interface designed for user convenience. To demonstrate the system's ability to replace human experts, 30 CBCT data were selected for validation. Two orthodontists and one advanced general dentist located required landmarks by using a commercial dental program. The differences between manual and developed methods were calculated and reported as the errors. RESULTS: The intraclass correlation coefficients (ICCs) and 95% confidence interval (95% CI) for intra-observer reliability were 0.98 (0.97-0.99) for observer 1; 0.95 (0.93-0.97) for observer 2; 0.98 (0.97-0.99) for observer 3 after measuring 13 parameters two times at two weeks interval. The combined ICC for intra-observer reliability was 0.97. The ICCs and 95% CI for inter-observer reliability were 0.94 (0.91-0.97). The mean absolute value of deviation was around 1 mm for the length parameters, and smaller than 2° for angle parameters. Furthermore, ANOVA test demonstrated the consistency between the measurements of the proposed method and those of human experts statistically (Fdis=2.68, ɑ=0.05). CONCLUSIONS: The proposed system demonstrated the high consistency with the manual measurements of human experts and its applicability. This method aimed to help human experts save time and efforts for analyzing three-dimensional CBCT images of orthodontic patients.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Cefalometria/métodos , Reprodutibilidade dos Testes , Inteligência Artificial , Imageamento Tridimensional/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador
6.
Comput Biol Med ; 132: 104298, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33677167

RESUMO

Osteoporosis, which is a common disorder associated with low bone mineral density (BMD), is one of the primary reasons for hip fracture. It not only limits mobility, but also makes the patient suffer from pain. Unlike traditional methods, which require both expensive equipment and long scanning times, this study aims to develop a novel technique employing a convolutional neural network (CNN) directly on radiographs of the hips to evaluate BMD. To construct the dataset, X-ray photographs of lower limbs and dual-energy X-ray absorptiometry (DXA) results of the hips of patients were collected. The core of this research is a deep learning-based model that was trained using the pre-processed X-rays images of 510 hips as the input data and the BMD values obtained from DXA as the standard reference. To improve performance quality, the radiographs of the hips were processed with a Sobel algorithm to extract the gradient magnitude maps, and an ensemble artificial neural network which analyses the outputs of CNN models corresponding to three Singh sites and biological parameters was utilized. The superior performance of the proposed method was confirmed by the high correlation coefficient of 0.8075 (p<0.0001) of the BMD measured by DXA in a total of 150 testing cases, with only 0.12 s required for applying the computing configuration to a single X-ray image.


Assuntos
Densidade Óssea , Osteoporose , Absorciometria de Fóton , Quadril , Humanos , Redes Neurais de Computação
7.
Comput Methods Programs Biomed ; 197: 105699, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32805697

RESUMO

Low back pain which is caused by the abnormal spinal alignment is one of the most common musculoskeletal symptom and, consequently, is the reason for not only reduction of productivity but also personal suffering. In clinical diagnosis for this disease, estimating adult spinal deformity is required as an indispensable procedure in highlighting abnormal values to output timely warnings and providing precise geometry dimensions for therapeutic therapies. This paper presents an automated method for precisely measuring spinopelvic parameters using a decentralized convolutional neural network as an efficient replacement for current manual process which not only requires experienced surgeons but also shows limitation in ability to process large numbers of images to accommodate the explosion of big data technologies. The proposed method is based on gradually narrowing the regions of interest (ROIs) for feature extraction and leads the model to mainly focus on the necessary geometry characteristics represented as keypoints. According to keypoints obtained, parameters representing the spinal deformity are calculated, which consistency with manual measurement was validated by 40 test cases and, potentially, provided 1.45o mean absolute values of deviation for PTA as the minimum and 3.51o in case of LSA as maximum.


Assuntos
Redes Neurais de Computação , Coluna Vertebral , Rotação , Coluna Vertebral/diagnóstico por imagem
8.
Comput Biol Med ; 120: 103732, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250859

RESUMO

One of the first tasks in osteotomy and arthroplasty is to identify the lower limb varus and valgus deformity status. The measurement of a set of angles to determine this status is generally performed manually with the measurement accuracy depending heavily on the experience of the person performing the measurements. This study proposes a method for calculating the required angles in lower limb radiographic (X-ray) images supported by the convolutional neural network. To achieved high accuracy in the measuring process, not only is a decentralized deep learning algorithm, including two orders for the radiographic, utilized, but also a training dataset is built based on the geometric knowledge related to the deformity correction principles. The developed algorithm performance is compared with standard references consisting of manually measured values provided by doctors in 80 radiographic images exhibiting an impressively low deviation of less than 1.5° in 82.3% of the cases.


Assuntos
Redes Neurais de Computação , Osteotomia , Humanos , Extremidade Inferior/diagnóstico por imagem , Radiografia , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA