Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 257: 119345, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851370

RESUMO

The COVID-19 pandemic was caused by the SARS-CoV-2 virus, marking one of the most catastrophic global health crises of the 21st century. Throughout this period, widespread use and improper disposal of personal protective equipment (PPE) emerged as a pressing environmental issue, significantly impacting various life forms. During the COVID-19 pandemic, there was a high rate of PEP disposal. An alarming 1.6 × 106 tons of plastic waste each day has been generated since the onset of the outbreak, predominantly from the inadequate disposal of PPE. The mismanagement and subsequent degradation of discarded PPE significantly contribute to increased non-biodegradable micro(nano)plastic (MNP) waste. This pollution has had profound adverse effects on terrestrial, marine, and aquatic ecosystems, which have been extensively of concern recently. Accumulated MNPs within aquatic organisms could serve as a potential route for human exposure when consuming seafood. This review presents a novel aspect concerning the pollution caused by MNPs, particularly remarking on their role during the pandemic and their detrimental effects on human health. These microplastic particles, through the process of fragmentation, transform into nanoparticles, persisting in the environment and posing potential hazards. The prevalence of MNP from PPE, notably masks, raises concerns about their plausible health risks, warranting global attention and comprehensive exploration. Conducting a comprehensive evaluation of the long-term effects of these processes and implementing effective management strategies is essential.

2.
Sci Total Environ ; 926: 171859, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38518825

RESUMO

Environmental pollution of heavy metal(loid)s (HMs) caused adverse impacts, has become one of the emerging concerns and challenges worldwide. Metal(loid)s can pose significant threats to living organisms even when present in trace levels within environmental matrices. Extended exposure to these substances can lead to adverse health consequences in humans. Removing HM-contaminated water and moving toward sustainable development goals (SDGs) is critical. In this mission, biochar has recently gained attention in the environmental sector as a green and alternative material for wastewater removal. This work provides a comprehensive analysis of the remediation of typical HMs by biochars, associated with an understanding of remediation mechanisms, and gives practical solutions for ecologically sustainable. Applying engineered biochar in various fields, especially with nanoscale biochar-aided wastewater treatment approaches, can eliminate hazardous metal(loid) contaminants, highlighting an environmentally friendly and low-cost method. Surface modification of engineered biochar with nanomaterials is a potential strategy that positively influences its sorption capacity to remove contaminants. The research findings highlighted the biochars' ability to adsorb HM ions based on increased specific surface area (SSA), heightened porosity, and forming inner-sphere complexes with oxygen-rich groups. Utilizing biochar modification emerged as a viable approach for addressing lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), and chromium (Cr) pollution in aqueous environments. Most biochars investigated demonstrated a removal efficiency >90 % (Cd, As, Hg) and can reach an impressive 99 % (Pb and Cr). Furthermore, biochar and advanced engineered applications are also considered alternative solutions based on the circular economy.


Assuntos
Arsênio , Mercúrio , Metais Pesados , Humanos , Águas Residuárias , Cádmio/análise , Desenvolvimento Sustentável , Chumbo/análise , Metais Pesados/análise , Carvão Vegetal , Arsênio/análise , Mercúrio/análise , Cromo/análise , Poluição da Água/análise , Solo
3.
Sci Total Environ ; 899: 165323, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37422238

RESUMO

In recent years, pharmaceutical active compounds (PhACs) have attained global prevalence. The behavior of PhACs in agricultural soils is complex and depends on several factors, such as the nature of the compounds and their physicochemical characteristics, which affect their fate and potential threats to human health, ecosystems, and the environment. The detection of residual pharmaceutical content is possible in both agricultural soils and environmental matrices. PhACs are commonly found in agricultural soil, with concentrations varying significantly, ranging from as low as 0.048 ng g-1 to as high as 1420.76 mg kg-1. The distribution and persistence of PhACs in agriculture can lead to the leaching of these toxic pollutants into surface water, groundwater, and vegetables/plants, resulting in human health risks and environmental pollution. Biological degradation or bioremediation plays a critical role in environmental protection and efficiently eliminates contamination by hydrolytic and/or photochemical reactions. Membrane bioreactors (MBRs) have been investigated as the most recent approach for the treatment of emerging persistent micropollutants, including PhACs, from wastewater sources. MBR- based technologies have proven to be effective in eliminating pharmaceutical compounds, achieving removal rates of up to 100%. This remarkable outcome is primarily facilitated by the processes of biodegradation and metabolization. In addition, phytoremediation (i.e., constructed wetlands), microalgae-based technologies, and composting can be highly efficient in remediating PhACs in the environment. The exploration of key mechanisms involved in pharmaceutical degradation has revealed a range of approaches, such as phytoextraction, phytostabilization, phytoaccumulation, enhanced rhizosphere biodegradation, and phytovolatilization. The well-known advanced/tertiary removal of sustainable sorption by biochar, activated carbon, chitosan, etc. has high potential and yields excellent quality effluents. Adsorbents developed from agricultural by-products have been recognized to eliminate pharmaceutical compounds and are cost-effective and eco-friendly. However, to reduce the potentially harmful impacts of PhACs, it is necessary to focus on advanced technologies combined with tertiary processes that have low cost, high efficiency, and are energy-saving to remove these emerging pollutants for sustainable development.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Poluentes Químicos da Água/análise , Agricultura , Solo , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA