Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2209339120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577068

RESUMO

Cephalotaxines harbor great medical potential, but their natural source, the endemic conifer Cephalotaxus is highly endangered, creating a conflict between biotechnological valorization and preservation of biodiversity. Here, we construct the whole biosynthetic pathway to the 1-phenethylisoquinoline scaffold, as first committed compound for phenylethylisoquinoline alkaloids (PIAs), combining metabolic modeling, and transcriptome mining of Cephalotaxus hainanensis to infer the biosynthesis for PIA precursor. We identify a novel protein, ChPSS, driving the Pictet-Spengler condensation and show that this enzyme represents the branching point where PIA biosynthesis diverges from the concurrent benzylisoquinoline-alkaloids pathway. We also pinpoint ChDBR as crucial step to form 4-hydroxydihydrocinnamaldehyde diverging from lignin biosynthesis. The elucidation of the early PIA pathway represents an important step toward microbe-based production of these pharmaceutically important alkaloids resolving the conflict between biotechnology and preservation of biodiversity.


Assuntos
Alcaloides , Benzilisoquinolinas , Cephalotaxus , Cephalotaxus/genética , Biotecnologia
2.
Plant Physiol ; 193(1): 371-388, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37226320

RESUMO

Soil salinity is progressively impacting agriculture, including viticulture. Identification of genetic factors rendering grapevine (Vitis vinifera L.) resilience that can be introgressed into commercial varieties is necessary for safeguarding viticulture against the consequences of global climate change. To gain insight into the physiological and metabolic responses enabling salt tolerance, we compared a salt-tolerant accession of Vitis sylvestris from Tunisia, "Tebaba", with "1103 Paulsen" rootstock widely used in the Mediterranean. Salt stress was slowly increased, simulating the situation of an irrigated vineyard. We determined that "Tebaba" does not sequester sodium in the root but can cope with salinity through robust redox homeostasis. This is linked with rechanneling of metabolic pathways toward antioxidants and compatible osmolytes, buffering photosynthesis, such that cell-wall breakdown can be avoided. We propose that salt tolerance of this wild grapevine cannot be attributed to a single genetic factor but emerges from favorable metabolic fluxes that are mutually supportive. We suggest that introgression of "Tebaba" into commercial varieties is preferred over the use of "Tebaba" as a rootstock for improving salt tolerance in grapevine.


Assuntos
Tolerância ao Sal , Vitis , Tolerância ao Sal/genética , Vitis/fisiologia , Estresse Salino , Fotossíntese , Solo
3.
J Exp Bot ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023232

RESUMO

Domesticated strawberry is susceptible to sudden frost episodes, limiting the productivity of this cash crop in regions, where they are grown during early spring. In contrast, the ancestral woodland strawberry (Fragaria vesca) has successfully colonised many habitats of the Northern Hemisphere. Thus, this species seems to harbour genetic factors promoting cold tolerance. Screening a germplasm established in frame of the German Gene Bank for Crop Wild Relatives we identified, among 70 wild accessions, a pair contrasting with respect to cold tolerance. By following the physiological, biochemical, molecular, and metabolic responses of this contrasting pair, we identified the transcription factor Cold Box Factor 4 and the dehydrin Xero-2 as molecular markers associated with superior tolerance to cold stress. Overexpression of GFP fusions with Xero-2 in tobacco BY-2 cells conferred cold tolerance to these recipient cells. A detailed analysis of the metabolome for the two contrasting genotypes allows to define metabolic signatures correlated with cold tolerance versus cold stress. This work provides a proof-of-concept for the value of crop wild relatives as genetic resources to identify genetic factors suitable to increase the stress resilience of crop plants.

4.
Chemistry ; 30(22): e202400066, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366887

RESUMO

Photoisomerizable peptides are promising drug candidates in photopharmacology. While azobenzene- and diarylethene-containing photoisomerizable peptides have already demonstrated their potential in this regard, reports on the use of spiropyrans to photoregulate bioactive peptides are still scarce. This work focuses on the design and synthesis of a spiropyran-derived amino acid, (S)-2-amino-3-(6'-methoxy-1',3',3'-trimethylspiro-[2H-1-benzopyran-2,2'-indolin-6-yl])propanoic acid, which is suitable for the preparation of photoisomerizable peptides. The utility of this amino acid is demonstrated by incorporating it into the backbone of BP100, a known membrane-active peptide, and by examining the photoregulation of the membrane perturbation by the spiropyran-containing peptides. The toxicity of the peptides (against the plant cell line BY-2), their bacteriotoxicity (E. coli), and actin-auxin oscillator modulation ability were shown to be significantly dependent on the photoisomeric state of the spiropyran unit.


Assuntos
Escherichia coli , Indóis , Nitrocompostos , Peptídeos , Benzopiranos/química , Aminoácidos
5.
BMC Plant Biol ; 23(1): 304, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286974

RESUMO

BACKGROUND: Powdery Mildew of Grapevine belongs to the major diseases in viticulture and requires intensive use of fungicides. Genetic introgression of resistance factors from wild grapes from North America and, recently, China, has been successful, but wine made from those varieties is still confronted with low consumer acceptance, due to differences in taste. RESULTS: The current work explores the potential of Vitis vinifera sylvestris, the wild ancestor of domesticated Grapevine, with respect to containing Erysiphe necator, the causative agent of Powdery Mildew. Making use of a germplasm collection comprising the entire genetic variability remaining in Germany, we show that there is considerable genetic variation in the formation of leaf surface waxes exceeding wax formation in commercial varieties. CONCLUSIONS: High wax formation correlates with reduced susceptibility to controlled infection with E. necator linked with perturbations of appressoria formation. We propose V. vinifera sylvestris as novel source for resistance breeding since it is genetically much closer to domesticated grapevine than the hitherto used sources from beyond the species barrier.


Assuntos
Ascomicetos , Vitis , Vitis/genética , Resistência à Doença/genética , Ascomicetos/genética , Doenças das Plantas/genética , Melhoramento Vegetal
6.
Plant Cell Environ ; 46(1): 339-358, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36263963

RESUMO

An apoplectic breakdown from grapevine trunk diseases (GTDs) has become a serious challenge to viticulture as a consequence of drought stress. We hypothesize that fungal aggressiveness is controlled by a chemical communication between the host and colonizing fungus. We introduce the new concept of a 'plant surrender signal' accumulating in host plants under stress and facilitating the aggressive behaviour of the strain Neofusicoccum parvum (Bt-67) causing Botryosphaeriaceae-related dieback in grapevines. Using a cell-based experimental system (Vitis cells) and bioactivity-guided fractionation, we identify trans-ferulic acid, a monolignol precursor, as a 'surrender signal'. We show that this signal specifically activates the secretion of the fungal phytotoxin fusicoccin A aglycone. We show further that this phytotoxin, mediated by 14-3-3 proteins, activates programmed cell death in Vitis cells. We arrive at a model showing a chemical communication facilitating fusicoccin A secretion that drives necrotrophic behaviour during Botryosphaeriaceae-Vitis interaction through trans-ferulic acid. We thus hypothesize that channelling the phenylpropanoid pathway from this lignin precursor to the trans-resveratrol phytoalexin could be a target for future therapy.


Assuntos
Apoptose
7.
Plant Cell Environ ; 46(11): 3575-3591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431974

RESUMO

In a consequence of global warming, grapevine trunk diseases (GTDs) have become a pertinent problem to viticulture, because endophytic fungi can turn necrotrophic upon host stress killing the plant. In Neofusicoccum parvum Bt-67, plant-derived ferulic acid makes the fungus release Fusicoccin aglycone triggering plant cell death. Now, we show that the absence of ferulic acid lets the fungus secrete 4-hydroxyphenylacetic acid (4-HPA), mimicking the effect of auxins on grapevine defence and facilitating fungal spread. Using Vitis suspension cells, we dissected the mode of action of 4-HPA during defence triggered by the bacterial cell-death elicitor, harpin. Early responses (cytoskeletal remodelling and calcium influx) are inhibited, as well as the expression of Stilbene Synthase 27 and phytoalexin accumulation. In contrast to other auxins, 4-HPA quells transcripts for the auxin conjugating GRETCHEN HAGEN 3. We suggest that 4-HPA is a key component of the endophytic phase of N. parvum Bt-67 preventing host cell death. Therefore, our study paves the way to understand how GTDs regulate their latent phase for successful colonisation, before turning necrotrophic and killing the vines.

8.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047191

RESUMO

Grain amaranth (Amaranthus spp.) is an emerging crop rich in proteins and other valuable nutrients. It was domesticated twice, in Mexico and Peru. Although global trade is dominated by Mexican species of amaranth, Peruvian amaranth (A. caudatus, kiwicha) has remained neglected, although it harbours valuable traits. In the current study, we investigate the accumulation of polyunsaturated fatty acids, comparing four genotypes of A. caudatus with K432, a commercial variety deriving from the Mexican species A. hypochondriacus under the temperate environment of Southwest Germany. We show that the A. caudatus genotypes flowered later (only in late autumn), such that they were taller as compared to the Mexican hybrid but yielded fewer grains. The oil of kiwicha showed a significantly higher content of unsaturated fatty acids, especially of linoleic acid and α-linolenic acid compared to early flowering genotype K432. To gain insight into the molecular mechanisms behind these differences, we sequenced the genomes of the A. hypochondriacus × hybridus variety K432 and the Peruvian kiwicha genotype 8300 and identified the homologues for genes involved in the ω3 fatty-acid pathway and concurrent oxylipin metabolism, as well as of key factors for jasmonate signalling and cold acclimation. We followed the expression of these transcripts over three stages of seed development in all five genotypes. We find that transcripts for Δ6 desaturases are elevated in kiwicha, whereas in the Mexican hybrid, the concurrent lipoxygenase is more active, which is followed by the activation of jasmonate biosynthesis and signalling. The early accumulation of transcripts involved in cold-stress signalling reports that the Mexican hybrid experiences cold stress already early in autumn, whereas the kiwicha genotypes do not display indications for cold stress, except for the very final phase, when there were already freezing temperatures. We interpret the higher content of unsaturated fatty acids in the context of the different climatic conditions shaping domestication (tropical conditions in the case of Mexican amaranth, sharp cold snaps in the case of kiwicha) and suggest that kiwicha oil has high potential as functional food which can be developed further by tailoring genetic backgrounds, agricultural practice, and processing.


Assuntos
Amaranthus , Ácido Linoleico , Ácido Linoleico/metabolismo , Peru , Amaranthus/genética , Ácidos Graxos Insaturados/metabolismo
9.
BMC Plant Biol ; 22(1): 601, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539712

RESUMO

BACKGROUND: The annual yield losses caused by the Rice Blast Fungus, Magnaporthe oryzae, range to the equivalent for feeding 60 million people. To ward off infection by this fungus, rice has evolved a generic basal immunity (so called compatible interaction), which acts in concert with strain-specific defence (so-called incompatible interaction). The plant-defence hormone jasmonic acid (JA) promotes the resistance to M. oryzae, but the underlying mechanisms remain elusive. To get more insight into this open question, we employ the JA-deficient mutants, cpm2 and hebiba, and dissect the JA-dependent defence signalling in rice for both, compatible and incompatible interactions. RESULTS: We observe that both JA-deficient mutants are more susceptible to M. oryzae as compared to their wild-type background, which holds true for both types of interactions as verified by cytological staining. Secondly, we observe that transcripts for JA biosynthesis (OsAOS2 and OsOPR7), JA signalling (OsJAZ8, OsJAZ9, OsJAZ11 and OsJAZ13), JA-dependent phytoalexin synthesis (OsNOMT), and JA-regulated defence-related genes, such as OsBBTI2 and OsPR1a, accumulate after fungal infection in a pattern that correlates with the amplitude of resistance. Thirdly, induction of defence transcripts is weaker during compatible interaction. CONCLUSION: The study demonstrates the pivotal role of JA in basal immunity of rice in the resistance to M. oryzae in both, compatible and incompatible interactions.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Ciclopentanos/farmacologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas
10.
Ann Bot ; 130(2): 159-171, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35700109

RESUMO

BACKGROUND AND AIMS: Condensed tannins, responsible for berry and wine astringency, may have been selected during grapevine domestication. This work examines the phylogenetic distribution of condensed tannins throughout the Vitaceae phylogenetic tree. METHODS: Green berries and mature leaves of representative true-to-type members of the Vitaceae were collected before 'véraison', freeze-dried and pulverized, and condensed tannins were measured following depolymerization by nucleophilic addition of 2-mercaptoethanol to the C4 of the flavan-3-ol units in an organic acidic medium. Reaction products were separated and quantified by ultrahigh pressure liquid chromatography/diode array detection/mass spectrometry. KEY RESULTS AND CONCLUSIONS: The original ability to incorporate epigallocatechin (EGC) into grapevine condensed tannins was lost independently in both the American and Eurasian/Asian branches of the Vitaceae, with exceptional cases of reversion to the ancestral EGC phenotype. This is particularly true in the genus Vitis, where we now find two radically distinct groups differing with respect to EGC content. While Vitis species from Asia are void of EGC, 50 % of the New World Vitis harbour EGC. Interestingly, the presence of EGC is tightly coupled with the degree of leaf margin serration. Noticeably, the rare Asian EGC-forming species are phylogenetically close to Vitis vinifera, the only remnant representative of Vitis in Eurasia. Both the wild ancestral V. vinifera subsp. sylvestris as well as the domesticated V. vinifera subsp. sativa can accumulate EGC and activate galloylation biosynthesis that compete for photoassimilates and reductive power.


Assuntos
Proantocianidinas , Vitaceae , Vitis , Catequina/análogos & derivados , Frutas , Filogenia , Folhas de Planta , Proantocianidinas/análise , Taninos/análise , Vitis/genética
11.
Plant Cell Rep ; 41(12): 2363-2378, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36214871

RESUMO

KEY MESSAGE: Paclitaxel synthesis in Taxus cells correlates with a cell-fate switch that leads to vacuoles of a glossy appearance and vermiform mitochondria. This switch depends on actin and apoplastic respiratory burst. Plant cell fermentation, the production of valuable products in plant cell culture, has great potential as sustainable alternative to the exploitation of natural resources for compounds of pharmaceutical interest. However, the success of this approach has remained limited, because the cellular aspects of metabolic competence are mostly unknown. The production of the anti-cancer alkaloid Paclitaxel has been, so far, the most successful case for this approach. In the current work, we map cellular aspects of alkaloid synthesis in cells of Taxus chinensis using a combination of live-cell imaging, quantitative physiology, and metabolite analysis. We show evidence that metabolic potency correlates with a differentiation event giving rise to cells with large vacuoles with a tonoplast that is of a glossy appearance, agglomerations of lipophilic compounds, and multivesicular bodies that fuse with the plasma membrane. Cellular features of these glossy cells are bundled actin, more numerous peroxisomes, and vermiform mitochondria. The incidence of glossy cells can be increased by aluminium ions, and this increase is significantly reduced by the actin inhibitor Latrunculin B, and by diphenylene iodonium, a specific inhibitor of the NADPH oxidase Respiratory burst oxidase Homologue (RboH). It is also reduced by the artificial auxin Picloram. This cellular fingerprint matches the implications of a model, where the differentiation into the glossy cell type is regulated by the actin-auxin oscillator that in plant cells acts as dynamic switch between growth and defence.


Assuntos
Taxus , Taxus/metabolismo , Ácidos Indolacéticos/metabolismo , Células Vegetais/metabolismo , Actinas/metabolismo , Fermentação , Paclitaxel/farmacologia , Paclitaxel/metabolismo
12.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682970

RESUMO

The transition to terrestrial plants was accompanied by a progressive loss of microtubule minus-end-directed dynein motors. Instead, the minus-end-directed class-XIV kinesins expanded considerably, likely related to novel functions. One of these motors, OsDLK (Dual Localisation Kinesin from rice), decorates cortical microtubules but moves into the nucleus in response to cold stress. This analysis of loss-of-function mutants in rice indicates that OsDLK participates in cell elongation during development. Since OsDLK harbours both a nuclear localisation signal and a putative leucin zipper, we asked whether the cold-induced import of OsDLK into the nucleus might correlate with specific DNA binding. Conducting a DPI-ELISA screen with recombinant OsDLKT (lacking the motor domain), we identified the Opaque2 motif as the most promising candidate. This motif is present in the promoter of NtAvr9/Cf9, the tobacco homologue of Cold-Box Factor 4, a transcription factor involved in cold adaptation. A comparative study revealed that the cold-induced accumulation of NtAvr9/Cfp9 was specifically quelled in transgenic BY-2 cells overexpressing OsDLK-GFP. These findings are discussed as a working model, where, in response to cold stress, OsDLK partitions from cortical microtubules at the plasma membrane into the nucleus and specifically modulates the expression of genes involved in cold adaptation.


Assuntos
Cinesinas , Oryza , Núcleo Celular/metabolismo , Dineínas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Oryza/genética , Oryza/metabolismo
13.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955725

RESUMO

The complexity of auxin signaling is partially due to multiple auxin receptors that trigger differential signaling. To obtain insight into the subcellular localization of auxin-binding sites, we used fluorescent auxin analogs that can undergo transport but do not deploy auxin signaling. Using fluorescent probes for different subcellular compartments, we can show that the fluorescent analog of 1-naphthaleneacetic acid (NAA) associates with the endoplasmic reticulum (ER) and tonoplast, while the fluorescent analog of indole acetic acid (IAA) binds to the ER. The binding of the fluorescent NAA analog to the ER can be outcompeted by unlabeled NAA, which allows us to estimate the affinity of NAA for this binding site to be around 1 µM. The non-transportable auxin 2,4-dichlorophenoxyacetic acid (2,4-D) interferes with the binding site for the fluorescent NAA analog at the tonoplast but not with the binding site for the fluorescent IAA analog at the ER. We integrate these data into a working model, where the tonoplast hosts a binding site with a high affinity for 2,4-D, while the ER hosts a binding site with high affinity for NAA. Thus, the differential subcellular localization of binding sites reflects the differential signaling in response to these artificial auxins.


Assuntos
Sinais (Psicologia) , Ácidos Indolacéticos , Ácido 2,4-Diclorofenoxiacético/farmacologia , Sítios de Ligação , Ácidos Indolacéticos/metabolismo , Transdução de Sinais
14.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232718

RESUMO

C-repeat binding factors (CBFs) are crucial transcriptional activators in plant responses to low temperature. CBF4 differs in its slower, but more persistent regulation and its role in cold acclimation. Cold acclimation has accentuated relevance for tolerance to late spring frosts as they have become progressively more common, as a consequence of blurred seasonality in the context of global climate change. In the current study, we explore the functions of CBF4 from grapevine, VvCBF4. Overexpression of VvCBF4 fused to GFP in tobacco BY-2 cells confers cold tolerance. Furthermore, this protein shuttles from the cytoplasm to the nucleus in response to cold stress, associated with an accumulation of transcripts for other CBFs and the cold responsive gene, ERD10d. This response differs for chilling as compared to freezing and is regulated differently by upstream signalling involving oxidative burst, proteasome activity and jasmonate synthesis. The difference between chilling and freezing is also seen in the regulation of the CBF4 transcript in leaves from different grapevines differing in their cold tolerance. Therefore, we propose the quality of cold stress is transduced by different upstream signals regulating nuclear import and, thus, the transcriptional activation of grapevine CBF4.


Assuntos
Regulação da Expressão Gênica de Plantas , Complexo de Endopeptidases do Proteassoma , Aclimatação/genética , Transporte Ativo do Núcleo Celular , Temperatura Baixa , Congelamento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
15.
New Phytol ; 229(2): 1133-1146, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896925

RESUMO

Grapevine trunk diseases have devastating consequences on vineyards worldwide. European wild grapevines (Vitis vinifera subs. sylvestris) from the last viable population in Germany along the Rhine river showed variable degrees of resistance against Neofusicoccum parvum (strain Bt-67), a fungus associated with Botryosphaeriaceae-related dieback. Representative genotypes from different subclades of this population were mapped with respect to their ability to induce wood necrosis, as well as their defence responses in a controlled inoculation system. The difference in colonization patterns could be confirmed by cryo-scanning electron microscopy, while there was no relationship between vessel diameter and infection success. Resistant lines accumulated more stilbenes, that were in addition significantly partitioned to nonglycosylated viniferin trimers. By contrast, the susceptible genotypes accumulated less stilbenes with a significantly higher proportion of glycosylated piceid. We suggest a model in which in the resistant genotypes phenylpropanoid metabolism is channelled rapidly and specifically to the bioactive stilbenes. Our study specifies a resistant chemotype against grapevines trunk diseases and paves a way to breed for resistance against grapevine Botryosphaeriaceae-related dieback.


Assuntos
Estilbenos , Vitis , Ascomicetos , Alemanha , Melhoramento Vegetal , Doenças das Plantas , Estilbenos/farmacologia , Vitis/genética
16.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502220

RESUMO

Phosphorus (P) is an essential macronutrient, playing a role in developmental and metabolic processes in plants. To understand the local and systemic responses of sorghum to inorganic phosphorus (Pi) starvation and the potential of straw and ash for reutilisation in agriculture, we compared two grain (Razinieh) and sweet (Della) sorghum varieties with respect to their morpho-physiological and molecular responses. We found that Pi starvation increased the elongation of primary roots, the formation of lateral roots, and the accumulation of anthocyanin. In Razinieh, lateral roots were promoted to a higher extent, correlated with a higher expression of SbPht1 phosphate transporters. Infrared spectra of straw from mature plants raised to maturity showed two prominent bands at 1371 and 2337 cm-1, which could be assigned to P-H(H2) stretching vibration in phosphine acid and phosphinothious acid, and their derivates, whose abundance correlated with phosphate uptake of the source plant and genotype (with a higher intensity in Razinieh). The ash generated from these straws stimulated the shoot elongation and root development of the rice seedlings, especially for the material derived from Razinieh raised under Pi starvation. In conclusion, sorghum growing on marginal lands has potential as a bio-economy alternative for mineral phosphorus recycling.


Assuntos
Oryza/crescimento & desenvolvimento , Fósforo/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Sorghum/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Sorghum/química , Estresse Fisiológico
17.
J Integr Plant Biol ; 63(5): 848-864, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33336892

RESUMO

The detyrosination/retyrosination cycle is the most common post-translational modification of α-tubulin. Removal of the conserved C-terminal tyrosine of α-tubulin by a still elusive tubulin tyrosine carboxypeptidase, and religation of this tyrosine by a tubulin tyrosine ligase (TTL), are probably common to all eukaryotes. Interestingly, for plants, the only candidates qualifying as potential TTL homologs are the tubulin tyrosine ligase-like 12 proteins. To get insight into the biological functions of these potential TTL homologs, we cloned the rice TTL-like 12 protein (OsTTLL12) and generated overexpression OsTTLL12-RFP lines in both rice and tobacco BY-2 cells. We found, unexpectedly, that overexpression of this OsTTLL12-RFP increased the relative abundance of detyrosinated α-tubulin in both coleoptile and seminal root, correlated with more stable microtubules. This was independent of the respective orientation of cortical microtubule, and followed by correspondingly changing growth of coleoptiles and seminal roots. A perturbed organization of phragmoplast microtubules and disoriented cell walls were further characteristics of this phenotype. Thus, the elevated tubulin detyrosination in consequence of OsTTLL12 overexpression affects structural and dynamic features of microtubules, followed by changes in the axiality of cell plate deposition and, consequently, plant growth.


Assuntos
Microtúbulos/metabolismo , Nicotiana/metabolismo , Oryza/metabolismo , Tubulina (Proteína)/metabolismo , Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Oryza/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Tubulina (Proteína)/genética
18.
J Integr Plant Biol ; 63(12): 2058-2074, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34636476

RESUMO

Traditional Chinese medicine (TCM) belongs to the most elaborate and extensive systems of plant-based healing. The herb Northern Ban Lan (Isatis tinctoria) is famous for its antiviral and anti-inflammatory activity. Although numerous components isolated from I. tinctoria have been characterized so far, their modes of action have remained unclear. Here, we show that extracts from I. tinctoria exert anti-microtubular activity. Using time-lapse microscopy in living tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cells expressing green fluorescent protein-tubulin, we use activity-guided fractionation to screen out the biologically active compounds of I. tinctoria. Among 54 fractions obtained from either leaves or roots of I. tinctoria by methanol (MeOH/H2 O 8:2), or ethyl acetate extraction, one specific methanolic root fraction was selected, because it efficiently and rapidly eliminated microtubules. By combination of further purification with ultra-high-performance liquid chromatography and high-resolution tandem mass spectrometry most of the bioactivity could be assigned to the glucosinolate compound glucobrassicin. Glucobrassicin can also affect microtubules and induce apoptosis in HeLa cells. In the light of these findings, the antiviral activity of Northern Ban Lan is discussed in the context of microtubules being hijacked by many viral pathogens for cell-to-cell spread.


Assuntos
Isatis , Glucosinolatos , Células HeLa , Humanos , Indóis , Isatis/química , Medicina Tradicional Chinesa , Microtúbulos
19.
J Exp Bot ; 71(1): 36-48, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560041

RESUMO

Cold stress is a major abiotic stress, restricting plant growth and development. Therefore, gene expression in response to cold stress and during cold acclimation has been studied intensively, including the ICE-CBF-COR pathway, as well as the modulation of this cascade by secondary messengers, for instance mitogen-activated protein kinase (MAPK) cascades. In contrast, the early events of cold perception and cold adaption have received far less attention. This is partially due to the fact that cold is a physical signal, which requires the conceptual framework to be adjusted. In this review, we address the role of microtubules in cold sensing, and propose a model whereby microtubules, while not being part of signalling itself, act as modulators of cold sensitivity. The purpose of this model is to derive implications for future experiments that will help to provide a more complete understanding of cold adaptation.


Assuntos
Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Microtúbulos/metabolismo , Fenômenos Fisiológicos Vegetais , Transdução de Sinais/fisiologia , Adaptação Biológica , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Modelos Biológicos
20.
J Exp Bot ; 71(12): 3710-3724, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32211774

RESUMO

Grapevine trunk diseases (GTDs) are progressively affecting vineyard longevity and productivity worldwide. To be able to understand and combat these diseases, we need a different concept of the signals exchanged between the grapevine and fungi than the well-studied pathogen-associated molecular pattern and effector concepts. We screened extracts from fungi associated with GTDs for their association with basal defence responses in suspension cells of grapevine. By activity-guided fractionation of the two selected extracts, O-methylmellein was identified as a candidate modulator of grapevine immunity. O-Methylmellein could not induce immune responses by itself (i.e. does not act as an elicitor), but could amplify some of the defence responses triggered by the bacterial elicitor flg22, such as the induction level of defence genes and actin remodelling. These findings show that Eutypa lata, exemplarily selected as an endophytic fungus linked with GTDs, can secrete compounds that act as amplifiers of basal immunity. Thus, in addition to elicitors that can trigger basal immunity, and effectors that down-modulate antibacterial basal immunity, once it had been activated, E. lata seems to secrete a third type of chemical signal that amplifies basal immunity and may play a role in the context of consortia of mutually competing microorganisms.


Assuntos
Vitis , Ascomicetos , Fungos , Doenças das Plantas , Imunidade Vegetal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA