Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 616(7957): 525-533, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046096

RESUMO

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Recidiva Local de Neoplasia/genética , Filogenia , Resultado do Tratamento , Fumar/genética , Fumar/fisiopatologia , Mutagênese , Variações do Número de Cópias de DNA
2.
PLoS Biol ; 22(1): e3002463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289907

RESUMO

The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics-such as varying levels of immunity-can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19) planning and response and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual variation in Ct values and complex host characteristics-such as vaccination status, exposure history, and age-we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least 5 prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs. Trial Registration: The Legacy study is a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College London Hospitals or at the Francis Crick Institute (NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469) and is sponsored by University College London Hospitals. Written consent was given by all participants.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiologia , Estudos Prospectivos
4.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32817211

RESUMO

In 2014, the Centre for Health Protection in Hong Kong introduced screening for influenza C virus (ICV) as part of its routine surveillance for infectious agents in specimens collected from patients presenting with symptoms of respiratory viral infection, including influenza-like illness (ILI). A retrospective analysis of ICV detections up to week 26 of 2019 revealed persistent low-level circulation, with two outbreaks having occurred in the winters of 2015 to 2016 and 2017 to 2018. These outbreaks occurred at the same time as, and were dwarfed by, seasonal epidemics of influenza types A and B. Gene sequencing studies on stored ICV-positive clinical specimens from the two outbreaks have shown that the hemagglutinin-esterase (HE) genes of the viruses fall into two of the six recognized genetic lineages (represented by C/Kanagawa/1/76 and C/São Paulo/378/82), with there being significant genetic drift compared to earlier circulating viruses within both lineages. The location of a number of encoded amino acid substitutions in hemagglutinin-esterase fusion (HEF) glycoproteins suggests that antigenic drift may also have occurred. Observations of ICV outbreaks in other countries, with some of the infections being associated with severe disease, indicates that ICV infection has the potential to have significant clinical and health care impacts in humans.IMPORTANCE Influenza C virus infection of humans is common, and reinfection can occur throughout life. While symptoms are generally mild, severe disease cases have been reported, but knowledge of the virus is limited, as little systematic surveillance for influenza C virus is conducted and the virus cannot be studied by classical virologic methods because it cannot be readily isolated in laboratories. A combination of systematic surveillance in Hong Kong SAR, China, and new gene sequencing methods has been used in this study to assess influenza C virus evolution and provides evidence for a 2-year cycle of disease outbreaks. The results of studies like that reported here are key to developing an understanding of the impact of influenza C virus infection in humans and how virus evolution might be associated with epidemics.


Assuntos
Surtos de Doenças , Gammainfluenzavirus/genética , Hemaglutininas Virais/genética , Influenza Humana/epidemiologia , Mutação , Proteínas Virais de Fusão/genética , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Criança , Pré-Escolar , Monitoramento Epidemiológico , Feminino , Expressão Gênica , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hong Kong/epidemiologia , Humanos , Lactente , Influenza Humana/patologia , Influenza Humana/virologia , Gammainfluenzavirus/enzimologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Epidemiologia Molecular , Filogenia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estudos Retrospectivos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
7.
Nature ; 477(7364): 326-9, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21921916

RESUMO

Structural variation is widespread in mammalian genomes and is an important cause of disease, but just how abundant and important structural variants (SVs) are in shaping phenotypic variation remains unclear. Without knowing how many SVs there are, and how they arise, it is difficult to discover what they do. Combining experimental with automated analyses, we identified 711,920 SVs at 281,243 sites in the genomes of thirteen classical and four wild-derived inbred mouse strains. The majority of SVs are less than 1 kilobase in size and 98% are deletions or insertions. The breakpoints of 160,000 SVs were mapped to base pair resolution, allowing us to infer that insertion of retrotransposons causes more than half of SVs. Yet, despite their prevalence, SVs are less likely than other sequence variants to cause gene expression or quantitative phenotypic variation. We identified 24 SVs that disrupt coding exons, acting as rare variants of large effect on gene function. One-third of the genes so affected have immunological functions.


Assuntos
Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Fenótipo , Animais , Pontos de Quebra do Cromossomo , Éxons/genética , Feminino , Expressão Gênica , Genômica , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos/imunologia , Mutagênese Insercional/genética , Locos de Características Quantitativas/genética , Ratos , Retroelementos/genética , Deleção de Sequência/genética
8.
Nature ; 477(7364): 289-94, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21921910

RESUMO

We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism.


Assuntos
Regulação da Expressão Gênica/genética , Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos/genética , Camundongos/genética , Fenótipo , Alelos , Animais , Animais de Laboratório/genética , Genômica , Camundongos/classificação , Camundongos Endogâmicos C57BL/genética , Filogenia , Locos de Características Quantitativas/genética
9.
Hum Mol Genet ; 21(13): 2862-72, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22434823

RESUMO

Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein levels, suggesting altered DISC1 expression as a pathogenic mechanism in psychiatric illness. Altered DISC1 expression in the post-mortem brains of individuals with psychiatric illness and the frequent implication of non-coding regions of the gene by association analysis further support this assertion. Here, we provide the first characterization of the DISC1 promoter region. Using dual luciferase assays, we demonstrate that a region -300 to -177 bp relative to the transcription start site (TSS) contributes positively to DISC1 promoter activity, while a region -982 to -301 bp relative to the TSS confers a repressive effect. We further demonstrate inhibition of DISC1 promoter activity and protein expression by forkhead-box P2 (FOXP2), a transcription factor implicated in speech and language function. This inhibition is diminished by two distinct FOXP2 point mutations, R553H and R328X, which were previously found in families affected by developmental verbal dyspraxia. Our work identifies an intriguing mechanistic link between neurodevelopmental disorders that have traditionally been viewed as diagnostically distinct but which do share varying degrees of phenotypic overlap.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Transtorno Bipolar/genética , Linhagem Celular Tumoral , Transtorno Depressivo Maior/genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Mutação Puntual , Esquizofrenia/genética
10.
PLoS Genet ; 7(7): e1002145, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21765815

RESUMO

Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.


Assuntos
Encéfalo/embriologia , Fatores de Transcrição Forkhead/genética , Redes Reguladoras de Genes , Neuritos/metabolismo , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Corpo Estriado/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
PLoS One ; 19(3): e0294897, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512960

RESUMO

BACKGROUND: SARS-CoV-2 variant Omicron rapidly evolved over 2022, causing three waves of infection due to sub-variants BA.1, BA.2 and BA.4/5. We sought to characterise symptoms and viral loads over the course of COVID-19 infection with these sub-variants in otherwise-healthy, vaccinated, non-hospitalised adults, and compared data to infections with the preceding Delta variant of concern (VOC). METHODS: In a prospective, observational cohort study, healthy vaccinated UK adults who reported a positive polymerase chain reaction (PCR) or lateral flow test, self-swabbed on alternate weekdays until day 10. We compared participant-reported symptoms and viral load trajectories between infections caused by VOCs Delta and Omicron (sub-variants BA.1, BA.2 or BA.4/5), and tested for relationships between vaccine dose, symptoms and PCR cycle threshold (Ct) as a proxy for viral load using Chi-squared (χ2) and Wilcoxon tests. RESULTS: 563 infection episodes were reported among 491 participants. Across infection episodes, there was little variation in symptom burden (4 [IQR 3-5] symptoms) and duration (8 [IQR 6-11] days). Whilst symptom profiles differed among infections caused by Delta compared to Omicron sub-variants, symptom profiles were similar between Omicron sub-variants. Anosmia was reported more frequently in Delta infections after 2 doses compared with Omicron sub-variant infections after 3 doses, for example: 42% (25/60) of participants with Delta infection compared to 9% (6/67) with Omicron BA.4/5 (χ2 P < 0.001; OR 7.3 [95% CI 2.7-19.4]). Fever was less common with Delta (20/60 participants; 33%) than Omicron BA.4/5 (39/67; 58%; χ2 P = 0.008; OR 0.4 [CI 0.2-0.7]). Amongst infections with an Omicron sub-variants, symptoms of coryza, fatigue, cough and myalgia predominated. Viral load trajectories and peaks did not differ between Delta, and Omicron, irrespective of symptom severity (including asymptomatic participants), VOC or vaccination status. PCR Ct values were negatively associated with time since vaccination in participants infected with BA.1 (ß = -0.05 (CI -0.10-0.01); P = 0.031); however, this trend was not observed in BA.2 or BA.4/5 infections. CONCLUSION: Our study emphasises both the changing symptom profile of COVID-19 infections in the Omicron era, and ongoing transmission risk of Omicron sub-variants in vaccinated adults. TRIAL REGISTRATION: NCT04750356.


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Estudos Prospectivos , Vacinação
12.
PLoS Genet ; 6(9): e1001085, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20838427

RESUMO

Genome-wide association studies using commercially available outbred mice can detect genes involved in phenotypes of biomedical interest. Useful populations need high-frequency alleles to ensure high power to detect quantitative trait loci (QTLs), low linkage disequilibrium between markers to obtain accurate mapping resolution, and an absence of population structure to prevent false positive associations. We surveyed 66 colonies for inbreeding, genetic diversity, and linkage disequilibrium, and we demonstrate that some have haplotype blocks of less than 100 Kb, enabling gene-level mapping resolution. The same alleles contribute to variation in different colonies, so that when mapping progress stalls in one, another can be used in its stead. Colonies are genetically diverse: 45% of the total genetic variation is attributable to differences between colonies. However, quantitative differences in allele frequencies, rather than the existence of private alleles, are responsible for these population differences. The colonies derive from a limited pool of ancestral haplotypes resembling those found in inbred strains: over 95% of sequence variants segregating in outbred populations are found in inbred strains. Consequently it is possible to impute the sequence of any mouse from a dense SNP map combined with inbred strain sequence data, which opens up the possibility of cataloguing and testing all variants for association, a situation that has so far eluded studies in completely outbred populations. We demonstrate the colonies' potential by identifying a deletion in the promoter of H2-Ea as the molecular change that strongly contributes to setting the ratio of CD4+ and CD8+ lymphocytes.


Assuntos
Animais não Endogâmicos/genética , Estudo de Associação Genômica Ampla , Animais , Animais de Laboratório/genética , Mapeamento Cromossômico , Deriva Genética , Marcadores Genéticos , Variação Genética/genética , Genética Populacional , Haplótipos/genética , Endogamia , Desequilíbrio de Ligação/genética , Camundongos , Fenótipo , Filogenia , Locos de Características Quantitativas/genética , Análise de Sequência de DNA
13.
medRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292842

RESUMO

The emergence of successive SARS-CoV-2 variants of concern (VOC) during 2020-22, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics - such as varying levels of immunity - can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform COVID-19 planning and response, and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both inter-individual variation in Ct values and complex host characteristics - such as vaccination status, exposure history and age - we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least five prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs.

14.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791208

RESUMO

Combining samples for genetic association is standard practice in human genetic analysis of complex traits, but is rarely undertaken in rodent genetics. Here, using 23 phenotypes and genotypes from two independent laboratories, we obtained a sample size of 3076 commercially available outbred mice and identified 70 loci, more than double the number of loci identified in the component studies. Fine-mapping in the combined sample reduced the number of likely causal variants, with a median reduction in set size of 51%, and indicated novel gene associations, including Pnpo, Ttll6, and GM11545 with bone mineral density, and Psmb9 with weight. However, replication at a nominal threshold of 0.05 between the two component studies was low, with less than one-third of loci identified in one study replicated in the second. In addition to overestimates in the effect size in the discovery sample (Winner's Curse), we also found that heterogeneity between studies explained the poor replication, but the contribution of these two factors varied among traits. Leveraging these observations, we integrated information about replication rates, study-specific heterogeneity, and Winner's Curse corrected estimates of power to assign variants to one of four confidence levels. Our approach addresses concerns about reproducibility and demonstrates how to obtain robust results from mapping complex traits in any genome-wide association study.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Animais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Camundongos , Herança Multifatorial , Peptídeo Sintases , Fenótipo , Reprodutibilidade dos Testes
15.
Curr Biol ; 18(5): 354-62, 2008 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-18328704

RESUMO

The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired linguistic processing for both spoken and written language. The FOXP2 transcription factor is highly similar in many vertebrate species, with conserved expression in neural circuits related to sensorimotor integration and motor learning. In this study, we generated mice carrying an identical point mutation to that of the KE family, yielding the equivalent arginine-to-histidine substitution in the Foxp2 DNA-binding domain. Homozygous R552H mice show severe reductions in cerebellar growth and postnatal weight gain but are able to produce complex innate ultrasonic vocalizations. Heterozygous R552H mice are overtly normal in brain structure and development. Crucially, although their baseline motor abilities appear to be identical to wild-type littermates, R552H heterozygotes display significant deficits in species-typical motor-skill learning, accompanied by abnormal synaptic plasticity in striatal and cerebellar neural circuits.


Assuntos
Fatores de Transcrição Forkhead/genética , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/genética , Mutação Puntual , Proteínas Repressoras/genética , Distúrbios da Fala/genética , Alelos , Animais , Heterozigoto , Humanos , Camundongos , Camundongos Knockout , Vocalização Animal/fisiologia
16.
N Engl J Med ; 359(22): 2337-45, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18987363

RESUMO

BACKGROUND: Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS: We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS: We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P=5.0x10(-5) at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS: The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Transtornos do Desenvolvimento da Linguagem/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Criança , Imunoprecipitação da Cromatina , Regulação para Baixo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Reação em Cadeia da Polimerase
17.
Genome Biol ; 22(1): 216, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34311762

RESUMO

BACKGROUND: The phenotype of an individual can be affected not only by the individual's own genotypes, known as direct genetic effects (DGE), but also by genotypes of interacting partners, indirect genetic effects (IGE). IGE have been detected using polygenic models in multiple species, including laboratory mice and humans. However, the underlying mechanisms remain largely unknown. Genome-wide association studies of IGE (igeGWAS) can point to IGE genes, but have not yet been applied to non-familial IGE arising from "peers" and affecting biomedical phenotypes. In addition, the extent to which igeGWAS will identify loci not identified by dgeGWAS remains an open question. Finally, findings from igeGWAS have not been confirmed by experimental manipulation. RESULTS: We leverage a dataset of 170 behavioral, physiological, and morphological phenotypes measured in 1812 genetically heterogeneous laboratory mice to study IGE arising between same-sex, adult, unrelated mice housed in the same cage. We develop and apply methods for igeGWAS in this context and identify 24 significant IGE loci for 17 phenotypes (FDR < 10%). We observe no overlap between IGE loci and DGE loci for the same phenotype, which is consistent with the moderate genetic correlations between DGE and IGE for the same phenotype estimated using polygenic models. Finally, we fine-map seven significant IGE loci to individual genes and find supportive evidence in an experiment with a knockout model that Epha4 gives rise to IGE on stress-coping strategy and wound healing. CONCLUSIONS: Our results demonstrate the potential for igeGWAS to identify IGE genes and shed light into the mechanisms of peer influence.


Assuntos
Interação Gene-Ambiente , Genótipo , Herança Multifatorial , Fenótipo , Receptor EphA4/genética , Estresse Fisiológico/genética , Animais , Conjuntos de Dados como Assunto , Feminino , Expressão Gênica , Heterogeneidade Genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Receptor EphA4/metabolismo , Cicatrização/genética
18.
Wellcome Open Res ; 6: 9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095506

RESUMO

The ongoing pandemic of SARS-CoV-2 calls for rapid and cost-effective methods to accurately identify infected individuals. The vast majority of patient samples is assessed for viral RNA presence by RT-qPCR. Our biomedical research institute, in collaboration between partner hospitals and an accredited clinical diagnostic laboratory, established a diagnostic testing pipeline that has reported on more than 252,000 RT-qPCR results since its commencement at the beginning of April 2020. However, due to ongoing demand and competition for critical resources, alternative testing strategies were sought. In this work, we present a clinically-validated procedure for high-throughput SARS-CoV-2 detection by RT-LAMP in 25 minutes that is robust, reliable, repeatable, sensitive, specific, and inexpensive.

19.
Res Sq ; 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34580668

RESUMO

Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study (NCT03226886) integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2-positive, 94 were symptomatic and 2 patients died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies, 82% had neutralizing antibodies against WT, whereas neutralizing antibody titers (NAbT) against the Alpha, Beta, and Delta variants were substantially reduced. Whereas S1-reactive antibody levels decreased in 13% of patients, NAbT remained stable up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment-specific, but presented compensatory cellular responses, further supported by clinical. Overall, these findings advance the understanding of the nature and duration of immune response to SARS-CoV-2 in patients with cancer.

20.
Nat Cancer ; 2(12): 1321-1337, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121900

RESUMO

Patients with cancer have higher COVID-19 morbidity and mortality. Here we present the prospective CAPTURE study, integrating longitudinal immune profiling with clinical annotation. Of 357 patients with cancer, 118 were SARS-CoV-2 positive, 94 were symptomatic and 2 died of COVID-19. In this cohort, 83% patients had S1-reactive antibodies and 82% had neutralizing antibodies against wild type SARS-CoV-2, whereas neutralizing antibody titers against the Alpha, Beta and Delta variants were substantially reduced. S1-reactive antibody levels decreased in 13% of patients, whereas neutralizing antibody titers remained stable for up to 329 days. Patients also had detectable SARS-CoV-2-specific T cells and CD4+ responses correlating with S1-reactive antibody levels, although patients with hematological malignancies had impaired immune responses that were disease and treatment specific, but presented compensatory cellular responses, further supported by clinical recovery in all but one patient. Overall, these findings advance the understanding of the nature and duration of the immune response to SARS-CoV-2 in patients with cancer.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , Neoplasias/complicações , Linfócitos T/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/mortalidade , Feminino , Seguimentos , Humanos , Imunidade Celular , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/imunologia , Estudos Prospectivos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA