Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Chem Chem Phys ; 25(33): 22538, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555358

RESUMO

Correction for 'Photoelectron angular distributions as sensitive probes of surfactant layer structure at the liquid-vapor interface' by Rémi Dupuy et al., Phys. Chem. Chem. Phys., 2022, 24, 4796-4808, https://doi.org/10.1039/D1CP05621B.

2.
J Chem Phys ; 158(11): 114301, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948841

RESUMO

The valence ionization of uracil and mixed water-uracil clusters has been studied experimentally and by ab initio calculations. In both measurements, the spectrum onset shows a red shift with respect to the uracil molecule, with the mixed cluster characterized by peculiar features unexplained by the sum of independent contributions of the water or uracil aggregation. To interpret and assign all the contributions, we performed a series of multi-level calculations, starting from an exploration of several cluster structures using automated conformer-search algorithms based on a tight-binding approach. Ionization energies have been assessed on smaller clusters via a comparison between accurate wavefunction-based approaches and cost-effective DFT-based simulations, the latter of which were applied to clusters up to 12 uracil and 36 water molecules. The results confirm that (i) the bottom-up approach based on a multilevel method [Mattioli et al. Phys. Chem. Chem. Phys. 23, 1859 (2021)] to the structure of neutral clusters of unknown experimental composition converges to precise structure-property relationships and (ii) the coexistence of pure and mixed clusters in the water-uracil samples. A natural bond orbital (NBO) analysis performed on a subset of clusters highlighted the special role of H-bonds in the formation of the aggregates. The NBO analysis yields second-order perturbative energy between the H-bond donor and acceptor orbitals correlated with the calculated ionization energies. This sheds light on the role of the oxygen lone-pairs of the uracil CO group in the formation of strong H-bonds, with a stronger directionality in mixed clusters, giving a quantitative explanation for the formation of core-shell structures.

3.
Phys Chem Chem Phys ; 24(8): 4796-4808, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156668

RESUMO

The characterization of liquid-vapor interfaces at the molecular level is an important underpinning for a basic understanding of fundamental heterogeneous processes in many areas, such as atmospheric science. Here we use X-ray photoelectron spectroscopy to study the adsorption of a model surfactant, octanoic acid, at the water-gas interface. In particular, we examine the information contained in photoelectron angular distributions and show that information about the relative depth of molecules and functional groups within molecules can be obtained from these measurements. Focusing on the relative location of carboxylate (COO-) and carboxylic acid (COOH) groups at different solution pH, the former is found to be immersed deeper into the liquid-vapor interface, which is confirmed by classical molecular dynamics simulations. These results help establish photoelectron angular distributions as a sensitive tool for the characterization of molecules at the liquid-vapor interface.

4.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897833

RESUMO

X-ray photoelectron spectroscopy of bovine serum albumin (BSA) in a liquid jet is used to investigate the electronic structure of a solvated protein, yielding insight into charge transfer mechanisms in biological systems in their natural environment. No structural damage was observed in BSA following X-ray photoelectron spectroscopy in a liquid jet sample environment. Carbon and nitrogen atoms in different chemical environments were resolved in the X-ray photoelectron spectra of both solid and solvated BSA. The calculations of charge distributions demonstrate the difficulty of assigning chemical contributions in complex systems in an aqueous environment. The high-resolution X-ray core electron spectra recorded are unchanged upon solvation. A comparison of the valence bands of BSA in both phases is also presented. These bands display a higher sensitivity to solvation effects. The ionization energy of the solvated BSA is determined at 5.7 ± 0.3 eV. Experimental results are compared with theoretical calculations to distinguish the contributions of various molecular components to the electronic structure. This comparison points towards the role of water in hole delocalization in proteins.


Assuntos
Albumina Sérica , Água , Eletrônica , Espectroscopia Fotoeletrônica , Soroalbumina Bovina , Água/química
5.
J Synchrotron Radiat ; 28(Pt 3): 778-789, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949986

RESUMO

Synchrotron radiation can induce sample damage, whether intended or not. In the case of sensitive samples, such as biological ones, modifications can be significant. To understand and predict the effects due to exposure, it is necessary to know the ionizing radiation dose deposited in the sample. In the case of aqueous samples, deleterious effects are mostly induced by the production of reactive oxygen species via water radiolysis. These species are therefore good indicators of the dose. Here the application of a microfluidic cell specifically optimized for low penetrating soft X-ray radiation is reported. Sodium benzoate was used as a fluorescent dosimeter thanks to its specific detection of hydroxyl radicals, a radiolytic product of water. Measurements at 1.28 keV led to the determination of a hydroxyl production yield, G(HO.), of 0.025 ±â€…0.004 µmol J-1. This result is in agreement with the literature and confirms the high linear energy transfer behavior of soft X-rays. An analysis of the important parameters of the microfluidic dosimetry cell, as well as their influences over dosimetry, is also reported.


Assuntos
Microfluídica , Síncrotrons , Dosímetros de Radiação , Radiometria , Raios X
6.
Langmuir ; 37(19): 5783-5794, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33939435

RESUMO

Pulsed laser ablation in liquid (PLAL) is a powerful method for producing nanoparticle colloids with a long-term stability despite the absence of stabilizing organic agents. The colloid stability involves different reactivities and chemical equilibria with complex ionic-specific effects at the nanoparticle/solvent interface which must be strongly influenced by their chemical composition. In this work, the surface composition of PLAL-produced gold nanoparticles in alkaline and saline (NaBr) water is investigated by X-ray photoelectron spectroscopy on free-flying nanoparticles, exempt from any substrate or radiation damage artifact. The Au 4f photoelectron spectra with a depth profiling investigation are used to evaluate the degree of nanoparticle surface oxidation. In alkaline water, the results preclude any surface oxidation contrary to the case of nanoparticles produced in NaBr solution. In addition, the analysis of Br 3d core-level photoelectron spectra agrees with a clear signature of Br on the nanoparticle surface, which is confirmed by a specific valence band feature. This experimental study is supported by DFT calculations, evaluating the energy balance of halide adsorption on different configurations of gold surfaces including oxidation or adsorbed salts.

7.
Phys Chem Chem Phys ; 23(30): 16224-16233, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34304262

RESUMO

To advance the understanding of key electrochemical and photocatalytic processes that depend on the electronic structure of aqueous solutions, X-ray photoemission spectroscopy has become an invaluable tool, especially when practiced with liquid microjet setups. Determining vertical ionization energies referenced to the vacuum level, and binding energies referenced to the Fermi level, including the much-coveted reorganization energy of the oxidized species of a redox couple, requires that energy levels be properly defined. The present paper addresses specifically how the vacuum level "just outside the surface" can be known through the energy position of the rising edge of the secondary electrons, and how the Fermi level reference is uniquely determined via the introduction of a redox couple. Taking the case of the ferricyanide/ferrocyanide and ferric/ferrous couples, this study also tackles issues related to the electrokinetic effects inherent to the production of a liquid jet in a vacuum, which has become the standard water sample environment for photoemission experiments.

8.
Phys Chem Chem Phys ; 23(48): 27484-27497, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34873605

RESUMO

We report on single- and double-charge photofragment formation by synchrotron radiation, following C 1s core excitation and ionization and Cl 2p inner excitation and ionization of chlorobenzene, C6H5Cl. From a comparison of experimental near-edge X-ray absorption fine structure spectra and theoretical ab initio calculations, the nature of various core and inner shell transitions of the molecule and pure atomic features were identified. To shed light on the normal Auger processes following excitation or ionization of the molecule at the Cl 2p or C 1s sites, we addressed the induced ionic species formation. With energy resolved electron spectra and ion time-of-flight spectra coincidence measurements, the ionic species were correlated with binding energy regions and initial states of vacancies. We explored the formation of the molecular dication C6H5Cl2+, the analogue benzene dication C6H42+, and the singly charged species produced by single loss of a carbon atom, C5HnCl+. The appearance and intensities of the spectral features associated with these ionic species are shown to be strongly site selective and dependent on the energy ranges of the Auger electron emission. Unexpected intensities for the analogue double charged benzene C6H42+ ion were observed with fast Auger electrons. The transitions leading to C6H5Cl2+ were identified from the binding energy representation of high resolution electron energy spectra. Most C6H5Cl2+ ions decay into two singly charged moieties, but intermediate channels are opened leading to other heavy dicationic species, C6H42+ and C6H4Cl2+, the channel leading to the first of these being much more favored than the other.

9.
Phys Chem Chem Phys ; 23(14): 8246-8260, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33710216

RESUMO

We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10-14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.

10.
J Chem Phys ; 154(11): 114302, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752348

RESUMO

We report a study on the fragmentation of core-ionized and core-excited isocyanic acid, HNCO, using Auger-electron/photoion coincidence spectroscopy. Site-selectivity is observed both for normal and resonant Auger electron decay. Oxygen 1s ionization leads to the CO+ + NH+ ion pairs, while nitrogen 1s ionization results in three-body dissociation and an efficient fragmentation of the H-N bond in the dication. Upon 1s → 10a' resonant excitation, clear differences between O and N sites are discernible as well. In both cases, the correlation between the dissociation channel and the binding energy of the normal Auger electrons indicates that the fragmentation pattern is governed by the excess energy available in the final ionic state. High-level multireference calculations suggest pathways to the formation of the fragment ions NO+ and HCO+, which are observed although the parent compound contains neither N-O nor H-C bonds. This work contributes to the goal to achieve and understand site-selective fragmentation upon ionization and excitation of molecules with soft x-ray radiation.

11.
J Chem Phys ; 154(9): 094303, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685139

RESUMO

Valence photoelectron spectra and photoelectron angular distributions of trans-dichloroethene have been measured with vibrational resolution at photon energies between 19 eV and 90 eV. Calculations of photoelectron anisotropy parameters, ß, and harmonic vibrational modes help provide initial insight into the molecular structure. The photon energy range encompasses the expected position of the atomic Cl 3p Cooper minimum. A corresponding dip observed here in the anisotropy of certain photoelectron bands permits the identification and characterization of those molecular orbitals that retain a localized atomic Cl character. The adiabatic approximation holds for the X2Au state photoelectron band, but vibronic coupling was inferred within the A-B-C and the D-E states by noting various failures of the Franck-Condon model, including vibrationally dependent ß-parameters. This is further explored using the linear vibronic coupling model with interaction parameters obtained from ab initio calculations. The A/B photoelectron band is appreciably affected by vibronic coupling, owing to the low-lying conical intersection of the A2Ag and B2Bu states. The C2Bg band is also affected, but to a lesser extent. The adiabatic minima of the D2Au and E2Ag states are almost degenerate, and the vibronic interaction between these states is considerable. The potential energy surface of the D2Au state is predicted to have a double-minimum shape with respect to the au deformations of the molecular structure. The irregular vibrational structure of the resulting single photoelectron band reflects the non-adiabatic nuclear dynamics occurring on the two coupled potential energy surfaces above the energy of their conical intersection.

12.
Phys Chem Chem Phys ; 22(23): 12909-12917, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32347253

RESUMO

Gas-phase near-edge X-ray-absorption fine structure (NEXAFS) action spectroscopy around the oxygen K-edge and mass spectrometry were employed to probe isolated substance P (SP) molecular ions, both bare and progressively solvated with 4 and 11 water molecules. Detailed mass spectra of bare and hydrated precursors are presented for the resonant photon energy of 532 eV that corresponds to O1s →π(amide)* core excitation, triggering resonant Auger decay and fragmentation from the ionized radical molecular system. The fragmentation pattern of doubly protonated SP hydrated with 4 water molecules clearly shows a series of abundant doubly charged backbone fragments, as well as triply charged precursor with small neutral losses, all preserving full water cluster. This is drastically different from the collisional induced dissociation of the hydrated peptide where the water loss is a dominant relaxation process. Moreover, the action NEXAFS obtained from several resolved small backbone fragments revealed increased fragmentation of hydrated SP relative to the bare one, due to a resonant O1s excitation of the attached water molecules. Such unexpected result inspires further experimental developments to investigate possible nonlocal energy transfer from the solvent to the biomolecules within the first solvation shell. The experiment is supported by molecular dynamics and DFT calculations to estimate the intensity of the resonant X-ray absorption of bare and hydrated SP around peptide and water O1s excitation region.


Assuntos
Oxigênio/química , Peptídeos/química , Transferência de Energia , Fótons , Solubilidade , Espectroscopia por Absorção de Raios X
13.
Phys Chem Chem Phys ; 22(6): 3264-3272, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31998901

RESUMO

Hydrogen bonding leads to the formation of strong, extended intermolecular networks in molecular liquids such as water. However, it is less well-known how robust the network is to environments in which surface formation or confinement effects become prominent, such as in clusters or droplets. Such systems provide a useful way to probe the robustness of the network, since the degree of confinement can be tuned by altering the cluster size, changing both the surface-to-volume ratio and the radius of curvature. To explore the formation of hydrogen bond networks in confined geometries, here we present O 1s Auger spectra of small and large clusters of water, methanol, and dimethyl ether, as well as their deuterated equivalents. The Auger spectra of the clusters and the corresponding macroscopic liquids are compared and evaluated for an isotope effect, which is due to proton dynamics within the lifetime of the core hole (proton-transfer-mediated charge-separation, PTM-CS), and can be linked to the formation of a hydrogen bond network in the system. An isotope effect is observed in water and methanol but not for dimethyl ether, which cannot donate a hydrogen bond at its oxygen site. The isotope effect, and therefore the strength of the hydrogen bond network, is more pronounced in water than in methanol. Its value depends on the average size of the cluster, indicating that confinement effects change proton dynamics in the core ionised excited state.

14.
J Phys Chem A ; 124(10): 1896-1902, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32118425

RESUMO

The description of the biological effects of ionizing radiation requires a good knowledge of the dose deposition processes at both the cellular and molecular scales. However, experimental studies on the energy deposition specificity of sub-keV electrons, produced by most radiations, including high-energy photons and heavy ions, are scarce. Soft X-rays (0.2-2 keV) are here used to probe the physical and physico-chemical events occurring upon exposure of liquid water to sub-keV electrons. Liquid water samples were irradiated with a monochromatic photon beam at the SOLEIL synchrotron. Hydroxyl radical quantification was conducted through HO• scavenging using benzoate to form fluorescent hydroxybenzoate. The yields of HO• radicals exhibit a minimum around 1.5 keV, in good agreement with indirect observation. Moreover, they are relatively independent of the benzoate concentration in the range investigated, which corresponds to scavenging times of 170 ns to 170 ps. These results provide evidence that sub-keV electrons behave as high linear energy transfer particles, since they are able to deposit tens to hundreds of electronvolts in nanometric volumes.

15.
Langmuir ; 35(36): 11859-11871, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31453695

RESUMO

The surface chemistry of gold nanoparticles produced by the pulsed laser ablation in liquids method is investigated by X-ray photoelectron spectroscopy (XPS). The presence of surface oxide expected on these systems is investigated using synchrotron radiation in conditions close to their original state in solvent but free from substrate or solvent effects which could affect the interpretation of spectroscopic observations. For that purpose we performed the experiment on a controlled free-standing nanoparticle beam produced by combination of an atomizer and an aerodynamic lens system. These results are compared with those obtained by the standard situation of deposited nanoparticles on silicon substrate. An accurate analysis based on Bayesian statistics concludes that the existence of oxide in the free-standing conditions cannot be solely confirmed by the recorded core-level 4f spectra. If present, our data indicate an upper limit of 2.15 ± 0.68% of oxide. However, a higher credence to the hypothesis of its existence is brought by the structureless valence profile of the free-standing beam. Moreover, the cross-comparison with the deposited nanoparticles case clearly evidences an important misleading substrate effect. Experiment with free-standing nanoparticles is then demonstrated to be the right way to further investigate oxidation states on Au nanoparticles.

16.
Phys Rev Lett ; 120(22): 223201, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906148

RESUMO

We show that electron and ion spectroscopy reveals the details of the oligomer formation in Ar clusters exposed to an x-ray free electron laser (XFEL) pulse, i.e., chemical dynamics triggered by x rays. With guidance from a dedicated molecular dynamics simulation tool, we find that van der Waals bonding, the oligomer formation mechanism, and charge transfer among the cluster constituents significantly affect ionization dynamics induced by an XFEL pulse of moderate fluence. Our results clearly demonstrate that XFEL pulses can be used not only to "damage and destroy" molecular assemblies but also to modify and transform their molecular structure. The accuracy of the predictions obtained makes it possible to apply the cluster spectroscopy, in connection with the respective simulations, for estimation of the XFEL pulse fluence in the fluence regime below single-atom multiple-photon absorption, which is hardly accessible with other diagnostic tools.

17.
J Chem Phys ; 149(9): 094304, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195315

RESUMO

Auger electron spectra following excitation or ionization of the I 3d level in CH3I have been recorded with horizontally or vertically plane polarized synchrotron radiation. These spectra have enabled the Auger electron angular distributions, as characterized by the ß parameter, to be determined. The I 3d photoionization partial cross section of CH3I has been calculated with the continuum multiple scattering approach, and the results show that in the photon energy range over which Auger spectra were measured, the I 3d cross section exhibits an atomic-like behavior and is dominated by transitions into the εf continuum channel. In this limit, the theoretical value of the alignment parameter (A20) characterizing the core ionized state in an atom becomes constant, independent of photon energy. This theoretical value has been used to obtain the Auger electron intrinsic anisotropy parameters (α2) from the ß parameters extracted from our normal (non-resonant) molecular Auger spectra. The resulting anisotropy parameters for the M45N45N45 transitions in CH3I have been compared to those calculated for the corresponding transitions in xenon, and the experimental and theoretical results are in good agreement. Anisotropy parameters have also been measured for the M45N1N45, M45N23N45, and M45N45O23 transitions. For the M45N1N45 and M45N23N45 Auger decays in CH3I, the experimentally derived angular distributions do not exhibit the strong dependence on the final ionic state that is predicted for these transitions in xenon. Resonantly excited Auger spectra have been recorded at 620.4 and 632.0 eV, coinciding with the I 3d5/2 → σ* and 3d3/2 → σ* transitions, respectively. The resulting Auger electron angular distributions for the M4N45N45 and M5N45N45 decays were found to exhibit a higher anisotropy than those for the normal process. This is due to the larger photo-induced alignment in the neutral core excited state. For a particular Auger transition, the Auger electron kinetic energy measured in the resonantly excited spectrum is higher than that in the normal spectrum. This shift, due to the screening provided by the electron excited into the σ* orbital, has been rationalized by calculating orbital ionization energies of I 3d excited and I 3d ionized states in CH3I.

18.
J Chem Phys ; 149(14): 144302, 2018 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-30316287

RESUMO

Ionization of the I 3d, 4s, and 4p orbitals in methyl iodide (CH3I) has been studied by using synchrotron radiation to measure the total ion yield and by recording photoelectron spectra with linearly polarized radiation in two polarization orientations. The complete photoelectron spectrum of CH3I has been recorded at several photon energies, and bands due to the C 1s, I 3d, 4s, 4p, and 4d atomic-like orbitals, as well as the molecular orbitals, have been observed and assigned. In the vicinity of the I 3d5/2 and 3d3/2 ionization thresholds at 626.8 and 638.3 eV, respectively, the ion yield displays weak structure in the pre-edge region due to transitions into valence or Rydberg states, and, at higher energies, a shoulder and a broad maximum attributed to the I 3d5/2 → εf and the I 3d3/2 → εf shape resonances, respectively. The absorption spectrum calculated using time-dependent density functional theory, within the Tamm-Dancoff approximation, has allowed assignments to be proposed for the valence and Rydberg states. The Stieltjes imaging technique has been used to simulate the absorption spectrum above the ionization threshold and indicates that transitions into the f(l = 3) continuum channel dominate. This conclusion has been corroborated by a Continuum Multiple Scattering-Xα (CMS-Xα) calculation. The asymmetric broadening of the photoelectron bands associated with the I 3d orbital, due to post collision interaction, is taken into account in our experimental analysis. Experimentally derived photoelectron anisotropy parameters for the I 3d orbital are in good agreement with the theoretical predictions obtained with the CMS-Xα approach. The I 3d shake-up/shake-off photoelectron spectrum has been recorded, and assignments have been proposed for several of the satellites. The M4N45N45 and M5N45N45 Auger electron yields have been measured, and that for the M5N45N45 decay exhibits a maximum due to interchannel coupling between the 3d5/2 and 3d3/2 continua. The photoelectron band associated with the I 4p orbital has an unusual appearance. Based upon previous theoretical work for the analogous Xe 4p orbital, it appears that the initial I 4p-1 hole state decays rapidly through Coster-Kronig and super-Coster-Kronig transitions. This leads to a redistribution of the spectral intensity associated with the I 4p orbital and results in a photoelectron spectrum containing a single structured band together with an extended continuum. Another continuum is observed on the high binding energy side of the peak due to the 4s orbital, and we assign this to super-Coster-Kronig transitions into the 4p-14d-1 continuum.

19.
Phys Chem Chem Phys ; 19(30): 19707-19721, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28530728

RESUMO

Coulomb explosion of diiodomethane CH2I2 molecules irradiated by ultrashort and intense X-ray pulses from SACLA, the Japanese X-ray free electron laser facility, was investigated by multi-ion coincidence measurements and self-consistent charge density-functional-based tight-binding (SCC-DFTB) simulations. The diiodomethane molecule, containing two heavy-atom X-ray absorbing sites, exhibits a rather different charge generation and nuclear motion dynamics compared to iodomethane CH3I with only a single heavy atom, as studied earlier. We focus on charge creation and distribution in CH2I2 in comparison to CH3I. The release of kinetic energy into atomic ion fragments is also studied by comparing SCC-DFTB simulations with the experiment. Compared to earlier simulations, several key enhancements are made, such as the introduction of a bond axis recoil model, where vibrational energy generated during charge creation processes induces only bond stretching or shrinking. We also propose an analytical Coulomb energy partition model to extract the essential mechanism of Coulomb explosion of molecules from the computed and the experimentally measured kinetic energies of fragment atomic ions by partitioning each pair Coulomb interaction energy into two ions of the pair under the constraint of momentum conservation. Effective internuclear distances assigned to individual fragment ions at the critical moment of the Coulomb explosion are then estimated from the average kinetic energies of the ions. We demonstrate, with good agreement between the experiment and the SCC-DFTB simulation, how the more heavily charged iodine fragments and their interplay define the characteristic features of the Coulomb explosion of CH2I2. The present study also confirms earlier findings concerning the magnitude of bond elongation in the ultrashort X-ray pulse duration, showing that structural damage to all but C-H bonds does not develop to a noticeable degree in the pulse length of ∼10 fs.

20.
Phys Chem Chem Phys ; 15(25): 10112-7, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23702903

RESUMO

The Xe 5s photoelectron spectrum and 5p(4)nl correlation satellites have been studied in small Xe clusters of an average size of about 15 atoms. The satellite structures are interpreted with the help of the atomic Xe lines. Transition energy shifts between the atomic and the corner/edge/face/bulk components in clusters are divided into polarization screening and exchange interaction energy. Interestingly enough, the ratios between corner/edge/face/bulk polarization screening and exchange interaction energies are found to reflect the ratios of the coordination numbers of corner/edge/face/bulk atoms in these small icosahedral cluster structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA