Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 45: 102589, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908737

RESUMO

Design of nanocarriers for efficient miRNA delivery can significantly improve miRNA-based therapies. Lipoplexes based on helper lipid, dioleoyl phosphatidylethanolamine (DOPE) and cationic lipid [2-(2,3-didodecyloxypropyl)-hydroxyethyl] ammonium bromide (DE) were formulated to efficiently deliver miR-1 or a combination of four microRNAs (miRcombo) to adult human cardiac fibroblasts (AHCFs). Lipoplexes with amino-to-phosphate groups ratio of 3 (N/P 3) showed nanometric hydrodynamic size (372 nm), positive Z-potential (40 mV) and high stability under storage conditions. Compared to commercial DharmaFECT1 (DF), DE-DOPE/miRNA lipoplexes showed superior miRNA loading efficiency (99 % vs. 64 %), and faster miRNA release (99 % vs. 82 % at 48 h). DE-DOPE/miR-1 lipoplexes showed superior viability (80-100 % vs. 50 %) in AHCFs, a 2-fold higher miR-1 expression and Twinfilin-1 (TWF-1) mRNA downregulation. DE-DOPE/miRcombo lipoplexes significantly enhanced AHCFs reprogramming into induced cardiomyocytes (iCMs), as shown by increased expression of CM markers compared to DF/miRcombo.


Assuntos
Lipossomos , MicroRNAs , Reprogramação Celular , Fibroblastos , Humanos , MicroRNAs/genética , Fosfatos , Fosfatidiletanolaminas , RNA Mensageiro , Transfecção
2.
Adv Healthc Mater ; 13(4): e2301481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37941521

RESUMO

Cardiac fibrosis is one of the main causes of heart failure, significantly contributing to mortality. The discovery and development of effective therapies able to heal fibrotic pathological symptoms thus remain of paramount importance. Micro-physiological systems (MPS) are recently introduced as promising platforms able to accelerate this finding. Here a 3D in vitro model of human cardiac fibrosis, named uScar, is developed by imposing a cyclic mechanical stimulation to human atrial cardiac fibroblasts (AHCFs) cultured in a 3D beating heart-on-chip and exploited to screen drugs and advanced therapeutics. The sole provision of a cyclic 10% uniaxial strain at 1 Hz to the microtissues is sufficient to trigger fibrotic traits, inducing a consistent fibroblast-to-myofibroblast transition and an enhanced expression and production of extracellular matrix (ECM) proteins. Standard of care anti-fibrotic drugs (i.e., Pirfenidone and Tranilast) are confirmed to be efficient in preventing the onset of fibrotic traits in uScar. Conversely, the mechanical stimulation applied to the microtissues limit the ability of a miRNA therapy to directly reprogram fibroblasts into cardiomyocytes (CMs), despite its proved efficacy in 2D models. Such results demonstrate the importance of incorporating in vivo-like stimulations to generate more representative 3D in vitro models able to predict the efficacy of therapies in patients.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo , Fibrose , Fibroblastos/metabolismo , Miofibroblastos/patologia , Proteínas da Matriz Extracelular/metabolismo , Miocárdio/metabolismo
3.
Procedia Comput Sci ; 217: 1918-1929, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687284

RESUMO

The COVID-19 pandemic was an unexpected and disruptive event that significantly affected the performance of manufacturing systems and supply chains in various sectors. In this paper, a literature review is provided, which investigates the role that Industry 4.0 technologies and simulation tools have played in addressing the effects of the pandemic crisis. Specifically, a bibliometric analysis provides an overview of the most influential technologies through a study of the most used keywords. While a document analysis, conducted on critical papers that concern real case studies, shows that so far simulation provided support in four main areas: energy consumption, healthcare supply chain & contact tracing, food supply chain, and in general supply chain management. The main outcome of this research work is that Industry 4.0 technologies and simulation models were particularly important during the pandemic crisis and their properties deserve to be deeply exploited in the near future.

4.
Int J Pharm ; 568: 118526, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323370

RESUMO

Nanoparticles of polymeric complexes made of hyaluronic acid and polyarginine were investigated for the encapsulation of the cationic hydrophilic drug pentamidine isethionate. The interaction between the anionic hyaluronic acid and the cationic pentamidine resulting in the formation of polyelectrolyte complexes was firstly studied. Then, nanoparticles made of hyaluronic acid and polyarginine loaded with pentamidine were developed. These drug delivery systems consist of a monodisperse population of negatively charged pentamidine-loaded nanoparticles with a high drug encapsulation rate (80%). Such high encapsulation efficiency coming from ion exchange was confirmed by measurements of the counterion isethionate released from pentamidine during nanoparticles formation. Besides, freeze-dried pentamidine-loaded nanoparticles kept their integrity after their reconstitution in water. In vitro studies on human lung (A549) and breast (MDA-MB-231) cancer cell lines showed that pentamidine-loaded nanoparticles were more cytotoxic in comparison to the free drug, suggesting an enhanced internalization of encapsulated drug by cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/administração & dosagem , Nanopartículas/administração & dosagem , Pentamidina/administração & dosagem , Peptídeos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Liofilização , Humanos , Ácido Hialurônico/química , Nanopartículas/química , Pentamidina/química , Peptídeos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA