Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(49): e202213065, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36250269

RESUMO

Colloidal quantum dots (QDs) can photocatalyze diverse organic reactions. However, reported QD-photocatalysts often contain highly-toxic elements Cd or Pb, and have not surpassed prototypical transition-metal complexes in terms of their photoredox power or excited-state energy. Here we report low-toxicity ZnSe/ZnS core/shell QDs as potent visible photocatalysts to drive challenging organic transformations. To overcome the limitation of short excited-state lifetime of the QDs, we functionalize their surfaces with benzophenone ligands which can rapidly extract electrons from photoexcited QDs and sustain long-lived charge-separated states. The benzophenone anions function as potent electron relay to drive dehalogenation of aryl chlorides and additive-free polymerization of acrylates. Alternatively, the QDs are functionalized with biphenyl ligands to store energy in long-lived, energetic triplets, enabling [2+2] homo-cycloaddition of styrene and cycloaddition of carbonyls with alkenes.


Assuntos
Pontos Quânticos , Pontos Quânticos/toxicidade , Compostos de Zinco , Sulfetos , Benzofenonas
2.
Angew Chem Int Ed Engl ; 61(35): e202208241, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35796033

RESUMO

A relatively new addition to the application portfolio of lead halide perovskites is to photosensitize molecular triplets for a variety of photochemical applications. Here we report visible-light-driven isomerization and cycloaddition of organic molecules sensitized by spectrally-tunable perovskite nanocrystals. We first demonstrate with stilbene as the substrate molecule that photoisomerization can proceed efficiently and rapidly by either directly grafting carboxylated stilbene onto nanocrystal surfaces or using triplet-acceptor ligands as the energy relay. The relay approach is more generally applicable as it does not require anchoring-group functionalization of substrate molecules, allowing us to facilely extend it to isomerization of a series of substituted stilbene molecules and ring-closing isomerization of diarylethene, as well as intermolecular [2+2] cycloaddition of acenaphthylene. This study opens an avenue of energy-transfer photocatalysis using perovskite nanocrystals.

3.
J Am Chem Soc ; 142(10): 4723-4731, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32070096

RESUMO

Charge transfer and recombination across the inorganic/organic interface in nanocrystal or quantum dot (QD)-molecule hybrid materials have been extensively studied. Principles of controlling charge transfer and recombination via energetics and electronic coupling have been established. However, the use of electron spin to control transfer and recombination pathways in such systems remains relatively underexplored. Here we use CdS QD-alizarin (AZ) as a model system to demonstrate this principle. Using time-resolved spectroscopy, we found that the charge-separated states (QD--AZ+) created by selectively exciting AZ molecules mostly recombined to regenerate ground-state complexes, whereas apparently the "same" charge separated states created by exciting QDs recombined to produce AZ molecular triplet states. Such a difference can be traced to the distinct spin configurations between excited QDs (QD*, with an ill-defined spin) and AZ (1AZ*, spin singlet) and the asymmetric electron and hole spin-flip rates in II-VI group QDs. The transferability of such a principle was confirmed by similar observations obtained for CdS QD-tetracene complexes. Opening an avenue for controlling charge transfer and recombination pathways via electron spin is potentially important for applications such as artificial photosynthesis.

4.
Nat Commun ; 11(1): 28, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911606

RESUMO

The mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface remain poorly understood. Many seemingly contradictory results have been reported, mainly because of the complicated trap states characteristic of inorganic semiconductors and the ill-defined relative energetics between semiconductors and molecules used in these studies. Here we clarify the transfer mechanisms by performing combined transient absorption and photoluminescence measurements, both with sub-picosecond time resolution, on model systems comprising lead halide perovskite nanocrystals with very low surface trap densities as the triplet donor and polyacenes which either favour or prohibit charge transfer as the triplet acceptors. Hole transfer from nanocrystals to tetracene is energetically favoured, and hence triplet transfer proceeds via a charge separated state. In contrast, charge transfer to naphthalene is energetically unfavourable and spectroscopy shows direct triplet transfer from nanocrystals to naphthalene; nonetheless, this "direct" process could also be mediated by a high-energy, virtual charge-transfer state.

5.
Chem Commun (Camb) ; 55(86): 12940-12943, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31599888

RESUMO

Mesoporous LaFeO3 was used as a p-type visible-light-absorbing semiconductor (VLAS) substrate for light-driven H2 generation. The successful modification of LaFeO3 with a molecular dye (P1*) and a molecular hydrogen production catalyst (NiP) paved a novel way to construct DS-PEC photocathodes for solar-driven H2 generation by using VLASs.

6.
ACS Appl Mater Interfaces ; 11(37): 34010-34019, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31453677

RESUMO

Although hybrid photocathodes built by immobilizing molecular catalysts to the surface of semiconductors through chemical linkages have been reported in recent years, systematic and comparative studies remain scarce about the impact of various anchoring groups on the performance, stability, and charge-transfer kinetics of molecular catalyst-decorated hybrid photocathodes for photoelectrochemical (PEC) H2 production. In this study, the molecular cobaloxime catalysts, CoPy-4-X (Py = pyridine, X = PO3H2, COOH, and CONH(OH)), bearing different anchoring groups were synthesized and covalently immobilized to the surface of the porous TiO2 layer coated on a p-Si plate or a fluorine-doped tin oxide glass. The influence of the anchoring groups on the performance of p-Si/TiO2/CoPy-4-X photocathodes was comparatively studied for PEC H2 evolution. Among the tested hybrid photocathodes, the one with a hydroxamate as an anchoring group displayed higher activity and lower charge-transfer resistance than that observed for the electrode with a carboxylate or a phosphonate as the anchoring group. Notably, the catalytic current of p-Si/TiO2/CoPy-4-CONH(OH) was attenuated only by 2.9% in the controlled potential photoelectrolysis tests in borate buffer solution at pH 9 at 0 V versus a reversible hydrogen electrode over 6 h. Moreover, the influence of anchoring groups on the interfacial electron transfer from the TiO2 layer to the immobilized cobaloxime catalyst and electron-hole recombination was studied by transient absorption spectroscopy. These results revealed that the hydroxamate as an anchoring group is superior to the carboxylate and phosphonate groups for speeding up the interfacial electron transfer and firmly immobilizing the molecular catalysts to the metal oxide semiconductors to build efficient and stable hybrid photoelectrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA