RESUMO
Classical friction laws traditionally assume that the friction between solid pairs remains constant with a given normal load. However, our study has unveiled a remarkable deviation from conventional wisdom. In this paper, we discovered that altering the loading mode of micro graphite flakes led to significant changes in the lateral friction under identical normal loads. By adding a cap onto a single graphite flake to disperse the normal load applied by an atomic force microscope (AFM) tip, we were able to distribute the concentrated force. Astonishingly, our results demonstrated a notable 4-7 times increase in friction as a consequence of load dispersion. Finite element analysis (FEA) further confirmed that the increase in compressive stress at the edges of the graphite flake, resulting from load dispersion, led to a significant increase in friction. This study underscores the critical role of the loading mode in microscale friction dynamics, challenging the prevailing notion that friction remains static with a given normal force. Importantly, our research sheds light on the potential for achieving macroscale structural superlubricity (SSL) by assembling microscale SSL graphite flakes by using a larger cap.
RESUMO
Structural superlubricity, a state of nearly zero friction and no wear between two contact surfaces under relative sliding, holds immense potential for research and application prospects in micro-electro-mechanical systems devices, mechanical engineering, and energy resources. A critical step towards the practical application of structural superlubricity is the mass transfer and high throughput performance evaluation. Limited by the yield rate of material preparation, existing automated systems, such as roll printing or massive stamping, are inadequate for this task. In this paper, a machine learning-assisted system is proposed to realize fully automated selective transfer and tribological performance measurement for structural superlubricity materials. Specifically, the system has a judgment accuracy of over 98% for the selection of micro-scale graphite flakes with structural superlubricity properties and complete the 100 graphite flakes assembly array to form various pre-designed patterns within 100 mins, which is 15 times faster than manual operation. Besides, the system is capable of automatically measuring the tribological performance of over 100 selected flakes on Si3N4, delivering statistical results for new interface which is beyond the reach of traditional methods. With its high accuracy, efficiency, and robustness, this machine learning-assisted system promotes the fundamental research and practical application of structural superlubricity.
RESUMO
Herein, we present an innovative graphene oxide (GO)-induced strategy for synthesizing GO-based metal-organic-framework composites (Co-BTC@GO) for high-performance supercapacitors. 1,3,5-Benzene tricarboxylic acid (BTC) is used as an inexpensive organic ligand for the synthesis of composites. An optimal GO dosage was ascertained by the combined analysis of morphology characterization and electrochemical measurement. The 3D Co-BTC@GO composites display a microsphere morphology similar to that of Co-BTC, indicating the framework effect of Co-BTC on GO dispersion. The Co-BTC@GO composites own a stable interface between the electrolyte and electrodes, as well as a better charge transfer path than pristine GO and Co-BTC. A study was conducted to determine the synergistic effects and electrochemical behavior of GO content on Co-BTC. The highest energy storage performance was achieved for Co-BTC@GO 2 (GO dosage is 0.02 g). The maximum specific capacitance was 1144 F/g at 1 A/g, with an excellent rate capability. After 2000 cycles, Co-BTC@GO 2 maintains outstanding life stability of 88.1%. It is expected that this material will throw light on the development of supercapacitor electrodes that hold good electrochemical properties.
RESUMO
Liquid-solid triboelectric nanogenerator (L-S TENG) is one of the major techniques to collect energy from tiny liquids, while the saturated charge density at the L-S interface is the key element to decide its performance. Here, we found that the saturated charge density of L-S contact electrification (CE) can be further increased under the illumination of an ultraviolet (UV) light. The fluorine-containing polymers and SiO2 are chosen as the electrification materials and with and without UV illumination on the L-S TENG. A series of experiments have been done to rule out the possible influences of anion generation, chemical change of solid surface, ionization of water, and so on. Therefore, we proposed that electrons belonging to water molecules can be excited to high energy states under UV illumination, which then transfer to solid surface and captured by the solid surface. Finally, a photoexcited electron transfer model is proposed to explain the enhancement of CE under the UV illumination. This work not only helps to further understand CE at L-S interface, but also offers an approach to further enhance the performance of L-S TENG, which can promote the TENG applications in the field of microfluidic systems, liquid energy harvesting, and droplet sensory.
RESUMO
Miniaturized or microscale generators that can effectively convert weak and random mechanical energy into electricity have significant potential to provide solutions for the power supply problem of distributed devices. However, owing to the common occurrence of friction and wear, all such generators developed so far have failed to simultaneously achieve sufficiently high current density and sufficiently long lifetime, which are crucial for real-world applications. To address this issue, we invent a microscale Schottky superlubric generator (S-SLG), such that the sliding contact between microsized graphite flakes and n-type silicon is in a structural superlubric state (an ultra-low friction and wearless state). The S-SLG not only generates high current (~210 Am-2) and power (~7 Wm-2) densities, but also achieves a long lifetime of at least 5,000 cycles, while maintaining stable high electrical current density (~119 Am-2). No current decay and wear are observed during the experiment, indicating that the actual persistence of the S-SLG is enduring or virtually unlimited. By excluding the mechanism of friction-induced excitation in the S-SLG, we further demonstrate an electronic drift process during relative sliding using a quasi-static semiconductor finite element simulation. Our work may guide and accelerate the future use of S-SLGs in real-world applications.
RESUMO
Tactile sensation plays important roles in virtual reality and augmented reality systems. Here, a self-powered, painless, and highly sensitive electro-tactile (ET) system for achieving virtual tactile experiences is proposed on the basis of triboelectric nanogenerator (TENG) and ET interface formed of ball-shaped electrode array. Electrostatic discharge triggered by TENG can induce notable ET stimulation, while controlled distance between the ET electrodes and human skin can regulate the induced discharge current. The ion bombardment technique has been used to enhance the electrification capability of triboelectric polymer. Accordingly, TENG with a contact area of 4 cm2 is capable of triggering discharge, leading to a compact system. In this skin-integrated ET interface, touching position and motion trace on the TENG surface can be precisely reproduced on skin. This TENG-based ET system can work for many fields, including virtual tactile displays, Braille instruction, intelligent protective suits, or even nerve stimulation.
RESUMO
As a well-known phenomenon, contact electrification (CE) has been studied for decades. Although recent studies have proven that CE between two solids is primarily due to electron transfer, the mechanism for CE between liquid and solid remains controversial. The CE process between different liquids and polytetrafluoroethylene (PTFE) film is systematically studied to clarify the electrification mechanism of the solid-liquid interface. The CE between deionized water and PTFE can produce a surface charges density in the scale of 1 nC cm-2 , which is ten times higher than the calculation based on the pure ion-transfer model. Hence, electron transfer is likely the dominating effect for this liquid-solid electrification process. Meanwhile, as ion concentration increases, the ion adsorption on the PTFE hinders electron transfer and results in the suppression of the transferred charge amount. Furthermore, there is an obvious charge transfer between oil and PTFE, which further confirms the presence of electron transfer between liquid and solid, simply because there are no ions in oil droplets. It is demonstrated that electron transfer plays the dominant role during CE between liquids and solids, which directly impacts the traditional understanding of the formation of an electric double layer (EDL) at a liquid-solid interface in physical chemistry.
RESUMO
As the dominant component for precise motion measurement, angle sensors play a vital role in robotics, machine control, and personalized rehabilitation. Various forms of angle sensors have been developed and optimized over the past decades, but none of them would function without an electric power. Here, a highly sensitive triboelectric self-powered angle sensor (SPAS) exhibiting the highest resolution (2.03 nano-radian) after a comprehensive optimization is reported. In addition, the SPAS holds merits of light weight and thin thickness, which enables its extensive integrated applications with minimized energy consumption: a palletizing robotic arm equipped with the SPAS can precisely reproduce traditional Chinese calligraphy via angular data it collects. In addition, the SPAS can be assembled in a medicare brace to record the flexion/extension of joints, which may benefit personalized orthopedic recuperation. The SPAS paves a new approach for applications in the emerging fields of robotics, sensing, personalized medicare, and artificial intelligence.
Assuntos
Nanotecnologia/instrumentação , Medicina de Precisão/instrumentação , Robótica , Fontes de Energia Elétrica , Desenho de Equipamento , Equipamentos Ortopédicos , RotaçãoRESUMO
Polymers are commonly used to fabricate triboelectric nanogenerators (TENGs). Here, several polymer films with similar main chains but different functional groups on the side chain are employed to clarify the contributions of each functional group to contact electrification (CE). The results show that the electron-withdrawing (EW) ability and density of these functional groups on the main chain can determine both the polarity and density of CE-induced surface charges. Similar results are obtained for CE in both the polymer-polymer and polymer-liquid modes. A theoretical mechanism involving electron cloud overlap is proposed to explain all of these results. More importantly, the unsaturated groups on poly(tetrafluoroethylene) molecular chain are proved to have a much stronger EW ability than the saturated groups. The density of these unsaturated groups can be increased using a sputtering technique, suggesting that this is a facile and effective method of enhancing the performance of TENGs. These results clarify the correlation between the molecular structure and macroscopic electrification behavior of polymers.
RESUMO
Triboelectric nanogenerators are an energy harvesting technology that relies on the coupling effects of contact electrification and electrostatic induction between two solids or a liquid and a solid. Here, we present a triboelectric nanogenerator that can work based on the interaction between two pure liquids. A liquid-liquid triboelectric nanogenerator is achieved by passing a liquid droplet through a freely suspended liquid membrane. We investigate two kinds of liquid membranes: a grounded membrane and a pre-charged membrane. The falling of a droplet (about 40 µL) can generate a peak power of 137.4 nW by passing through a pre-charged membrane. Moreover, this membrane electrode can also remove and collect electrostatic charges from solid objects, indicating a permeable sensor or charge filter for electronic applications. The liquid-liquid triboelectric nanogenerator can harvest mechanical energy without changing the object motion and it can work for many targets, including raindrops, irrigation currents, microfluidics, and tiny particles.
RESUMO
Triboelectric nanogenerators (TENGs) have been widely applied for energy harvesting and self-powered sensing, whereas smart deformable materials can be combined with the TENG to acquire a more intelligent and self-adaptive system. Here, based on the vapor-driven actuation material of a perfluorosulfonic acid ionomer (PFSA), we propose a type of humidity-responsive TENG. The integrated TENG array can automatically bend to the desired angles in response to different humidity conditions, and thus, it can effectively collect energy from both wind and rain drops, where the power density can reach 1.6 W m-2 at a wind speed of 25 m s-1 and 230 mW m-2 under rainy conditions. Meanwhile, this TENG array can fully lay down in dry weather, using the reflective surface to reflect sunlight and heat radiation. The vapor absorption process of the PSFA film can also result in the charge accumulation process. Accordingly, relying on the strong absorption capability of PFSA, a TENG-based vapor sensor with high sensitivity has been developed for monitoring chemical vapor leakage and humidity change. This work opens up a promising approach for the application of the humidity-responsive materials in the field of energy harvesting and self-powered sensors. It can also promote the development of TENG toward a more intelligent direction.
RESUMO
Intelligent actuating materials with vapor-stimulated mechanical response usually require complicated synthesizing processes or have a high cost. Here, we found that the UV/O3-modified poly(dimethylsiloxane) PDMS) film can show spontaneous curling deformation when it encounters small alcohol molecules such as ethanol vapor. Based on the coupling of the vapor-responsive PDMS film and triboelectric nanogenerator (TENG), a flexible actuator for object transport and a double-finger gripper for loading small objects are designed. The deformation and size change induced by vapor stimulation help these devices to adapt to the target objects of different sizes, while the electrostatic force provided by TENG can move or control the target object, for instance, the double-finger gripper can clamp an object of a weight of 6 g.
RESUMO
Nondestructive, high-efficiency, and on-demand intracellular drug/biomacromolecule delivery for therapeutic purposes remains a great challenge. Herein, a biomechanical-energy-powered triboelectric nanogenerator (TENG)-driven electroporation system is developed for intracellular drug delivery with high efficiency and minimal cell damage in vitro and in vivo. In the integrated system, a self-powered TENG as a stable voltage pulse source triggers the increase of plasma membrane potential and membrane permeability. Cooperatively, the silicon nanoneedle-array electrode minimizes cellular damage during electroporation via enhancing the localized electrical field at the nanoneedle-cell interface and also decreases plasma membrane fluidity for the enhancement of molecular influx. The integrated system achieves efficient delivery of exogenous materials (small molecules, macromolecules, and siRNA) into different types of cells, including hard-to-transfect primary cells, with delivery efficiency up to 90% and cell viability over 94%. Through simple finger friction or hand slapping of the wearable TENGs, it successfully realizes a transdermal biomolecule delivery with an over threefold depth enhancement in mice. This integrated and self-powered system for active electroporation drug delivery shows great prospect for self-tuning drug delivery and wearable medicine.
Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Fontes de Energia Elétrica/provisão & distribuição , Nanoestruturas/química , Animais , Fenômenos Biomecânicos , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Eletricidade , Eletrodos , Desenho de Equipamento/instrumentação , Fricção , Humanos , Células MCF-7 , Camundongos , Agulhas , Silício/químicaRESUMO
Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.
RESUMO
Electrowetting technique is an actuation method for manipulating position and velocity of fluids in the microchannels. By combining electrowetting technique and a freestanding mode triboelectric nanogenerator (TENG), we have designed a self-powered microfluidic transport system. In this system, a mini vehicle is fabricated by using four droplets to carry a pallet (6 mm × 8 mm), and it can transport some tiny object on the track electrodes under the drive of TENG. The motion of TENG can provide both driving power and control signal for the mini vehicle. The maximum load for this mini vehicle is 500 mg, and its highest controllable velocity can reach 1 m/s. Freestanding TENG has shown excellent capability to manipulate microfluid. Under the drive of TENG, the minimum volume of the droplet can reach 70-80 nL, while the tiny droplet can freely move on both horizontal and vertical planes. Finally, another strategy for delivering nanoparticles to the designated position has also been demonstrated. This proposed self-powered transport technique may have great applications in the field of microsolid/liquid manipulators, drug delivery systems, microrobotics, and human-machine interactions.
Assuntos
Eletroumectação/instrumentação , Dispositivos Lab-On-A-Chip , Nanotecnologia/instrumentação , Fontes de Energia Elétrica , Eletrodos , Desenho de Equipamento , Movimento (Física) , Nanopartículas/químicaRESUMO
Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric-photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating-structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation-induced emission in a lateral tensile range of 0-160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa-1 . The pressure sensing characteristics can remain stable in different stretching conditions, which demonstrates a synchronous and independent sensing property for external stimuli with great durability. By integrating on a robotic hand as a conformal covering, the STPS shows multidimensional mechanical sensing abilities for external touch and different gestures with joints bending. This work has first demonstrated a triboelectric-photonic coupled multifunctional sensing terminal, which may have great applications in human-machine interaction, soft robots, and artificial intelligence.
Assuntos
Fótons , Gestos , Humanos , Pele , Tato , Percepção do TatoRESUMO
The physical filtration mechanism of a traditional face mask has a low removal efficiency of ultrafine particulates in the size range of 10-1000 nm, which are badly harmful to human health. Herein, a novel self-powered electrostatic adsorption face mask (SEA-FM) based on the poly(vinylidene fluoride) electrospun nanofiber film (PVDF-ESNF) and a triboelectric nanogenerator (TENG) driven by respiration (R-TENG) is developed. The ultrafine particulates are electrostatically adsorbed by the PVDF-ESNF, and the R-TENG can continually provide electrostatic charges in this adsorption process by respiration. On the basis of the R-TENG, the SEA-FM shows that the removal efficiency of coarse and fine particulates is higher than 99.2 wt % and the removal efficiency of ultrafine particulates is still as high as 86.9 wt % after continually wearing for 240 min and a 30-day interval. This work has proposed as a new method of wearable air filtration and may have great prospects in human health, self-powered electronics, and wearable devices.
RESUMO
Recently, atmospheric pollution caused by particulate matter or volatile organic compounds (VOCs) has become a serious issue to threaten human health. Consequently, it is highly desirable to develop an efficient purifying technique with simple structure and low cost. In this study, by combining a triboelectric nanogenerator (TENG) and a photocatalysis technique, we demonstrated a concept of a self-powered filtering method for removing pollutants from indoor atmosphere. The photocatalyst P25 or Pt/P25 was embedded on the surface of polymer-coated stainless steel wires, and such steel wires were woven into a filtering network. A strong electric field can be induced on this filtering network by TENG, while both electrostatic adsorption effect and TENG-enhanced photocatalytic effect can be achieved. Rhodamine B (RhB) steam was selected as the pollutant for demonstration. The absorbed RhB on the filter network with TENG in 1 min was almost the same amount of absorption achieved in 15 min without using TENG. Meanwhile, the degradation of RhB was increased over 50% under the drive of TENG. Furthermore, such a device was applied for the degradation of formaldehyde, where degradation efficiency was doubled under the drive of TENG. This work extended the application for the TENG in self-powered electrochemistry, design and concept of which can be possibly applied in the field of haze governance, indoor air cleaning, and photocatalytic pollution removal for environmental protection.
RESUMO
Physical cues from nanostructured biomaterials have been shown to possess regulating effects on stem cell fate. In this study, nanostructured molybdenum disulfide (MoS2 ) thin films (MTFs) are prepared by assembling MoS2 nanosheets on a flat substrate. These films are used as a new biocompatible platform for promoting neural stem cell (NSC) differentiation. The results show that the nanostructured MTFs exhibit significantly positive effects on NSC attachment and proliferation without measurable toxicity. More importantly, immunostaining and real-time polymerase chain reaction assessments show that the nanostructured MTFs induce NSC differentiation into neural cells at higher efficiency. It is found that the MTFs have a good electrical conductivity and offer larger surface areas for NSC attachment and spreading compared with conventional tissue culture plates. Furthermore, multilayered cylindrical 3D living scaffolds are constructed by rolling up NSC-cultured MoS2 -polyvinylidene fluoride (PVDF) nanofiber films that are prepared by chemically assembling MoS2 nanostructures on electrospun PVDF flexible films. These living nerve scaffolds have a great potential for applications in nerve regeneration as cylindrical 3D living scaffolds.