Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(38): e202301027, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37129950

RESUMO

Liquid crystal elastomers (LCEs) are active soft matter-based materials with strong stimulus responsiveness and reversible, large-shape morphing capabilities. LCEs have demonstrated broad and growing applications in soft robotics, wearable devices, artificial muscles, and optical machines. The actuation intelligence and advanced functionality of LCEs depend on the smartness and properties of structures. In this review, we discuss recent advances in structure-induced intelligence of LCEs, specifically the integration of structural properties with the alignment and processing of LCEs. The structural design principles for three categories consisting of common structures (film, fiber, and tubule), smart structures (origami, kirigami, mechanical metamaterial, topology, and topography), and complex structures (monolithic and integrated) are presented. Various alignment controls of LCEs, including mechanical, surface, field-assisted, and shear alignment, are capable of inducing structural properties. The coupling and collaboration mechanisms of the LCE structures and the generated functions are discussed. The review concludes with perspectives on current challenges and emerging opportunities.


Assuntos
Cristais Líquidos , Robótica , Dispositivos Eletrônicos Vestíveis , Elastômeros , Inteligência
2.
Angew Chem Int Ed Engl ; 62(9): e202218227, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36624053

RESUMO

Jump is an important form of motion that enables animals to escape from predators, increase their range of activities, and better adapt to the environment. Inspired by springtails, we describe a light-driven soft jumping robot based on a double-folded liquid crystal elastomer (LCE) ribbon actuator with a monolithic three-leaf panel fold structure. This robot can achieve remarkable jumping height, jumping distance, and maximum take-off velocity, of up to 87 body length (BL), 65 BL, and 930 BL s-1 , respectively, under near-infrared light irradiation. Further, it is possible to control the height, distance, and direction of jump by changing the size and crease angle of the double-folded LCE ribbon actuators. These robots can efficiently jump over obstacles and can jump continuously, even in complex environments. Our simple design strategy improves the performance of jumping actuators and we expect it to have a wide-ranging impact on the strength, continuity, and adaptability of future soft robots.

3.
Angew Chem Int Ed Engl ; 62(25): e202304081, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37084180

RESUMO

Multimodal self-sustainable autonomous locomotions integrated into one individual system, are high-level intelligent behavioral characteristics of living organisms and are the scientific hotspot of bionic soft actuators. Here, we report a light-fueled soft actuator with multimodal self-sustainable movements based on a Seifert ribbon bounded by a Hopf link. The Seifert ribbon actuator can self-sense the illumination area adjustment, and the actuation component becomes either a discontinuous strip-like structure or a continuous toroidal structure, which can realize adaptive switches between self-sustained oscillatory and rotary motions. The two motion modes are applied to the self-oscillatory piezoelectric generation and self-rotational work multiplication of cargo transport, respectively. The unique smartness of Seifert surface topology advances the level of actuation intelligence with broad implications for the adaptability, multifunctionality, and autonomy of soft robots.


Assuntos
Cristais Líquidos , Locomoção , Citoesqueleto , Elastômeros , Movimento (Física)
4.
Angew Chem Int Ed Engl ; 61(16): e202200466, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35100478

RESUMO

The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge. Herein, an annulene-based discotic LC compound 6 with a saddle-shaped cyclooctatetrathiophene core has been synthesized to construct a tunable light-harvesting platform. The LC material shows a typical aggregation-induced emission, which can act as a suitable light-harvesting donor. By loading Nile red (NiR) as an acceptor, an artificial light-harvesting system is achieved. Relying on the thermal-responsive self-assembling ability of 6 with variable molecular order, the efficiency of such 6-NiR system can be controlled by temperature. This light-harvesting system works sensitively at a high donor/acceptor ratio as 1000 : 1, and exhibits a high antenna effect (39.1) at a 100 : 1 donor/acceptor ratio. This thermochromic artificial light-harvesting LC system could find potential applications in smart devices employing soft materials.

5.
Commun Chem ; 7(1): 58, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503863

RESUMO

Self-sustainable autonomous locomotion is a non-equilibrium phenomenon and an advanced intelligence of soft-bodied organisms that exhibit the abilities of perception, feedback, decision-making, and self-sustainment. However, artificial self-sustaining architectures are often derived from algorithms and onboard modules of soft robots, resulting in complex fabrication, limited mobility, and low sensitivity. Self-sustainable autonomous soft actuators have emerged as naturally evolving systems that do not require human intervention. With shape-morphing materials integrating in their structural design, soft actuators can direct autonomous responses to complex environmental changes and achieve robust self-sustaining motions under sustained stimulation. This perspective article discusses the recent advances in self-sustainable autonomous soft actuators. Specifically, shape-morphing materials, motion characteristics, built-in negative feedback loops, and constant stimulus response patterns used in autonomous systems are summarized. Artificial self-sustaining autonomous concepts, modes, and deformation-induced functional applications of soft actuators are described. The current challenges and future opportunities for self-sustainable actuation systems are also discussed.

6.
ACS Appl Mater Interfaces ; 15(23): 28546-28554, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37267423

RESUMO

Multifunctional flexible sensors are the development trend of wearable electronic devices in the future. As the core of flexible sensors, the key is to construct a stable multifunctional integrated conductive elastomer. Here, ionic conductive elastomers (ICEs) with self-wrinkling microstructures are designed and prepared by in situ phase separation induced by a one-step polymerization reaction. The ICEs are composed of ionic liquids as ionic conductors doped into liquid crystal elastomers. The doped ionic liquids cluster into small droplets and in situ induce the formation of wrinkle structures on the upper surface of the films. The prepared ICEs exhibit mechanochromism, conductivity, large tensile strain, low hysteresis, high cycle stability, and sensitivity during the tension-release process, which achieve dual-mode outputs of optical and electrical signals for information transmission and sensors.

7.
Nat Commun ; 12(1): 2334, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879795

RESUMO

Twisted toroidal ribbons such as the one-sided Möbius strip have inspired scientists, engineers and artists for many centuries. A physical Möbius strip exhibits interesting mechanical properties deriving from a tendency to redistribute the torsional strain away from the twist region. This leads to the interesting possibility of building topological actuators with continuous deformations. Here we report on a series of corresponding bi-layered stripe actuators using a photothermally responsive liquid crystal elastomer as the fundamental polymeric material. Employing a special procedure, even Möbius strips with an odd number of twists can be fabricated exhibiting a seamless homeotropic and homogeneous morphology. Imposing a suitable contraction gradient under near-infrared light irradiation, these ribbons can realize continuous anticlockwise/clockwise in-situ rotation. Our work could pave the way for developing actuators and shape morphing materials that need not rely on switching between distinct states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA