Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 66(3): 420-435.e5, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475875

RESUMO

Interactions between transcriptional promoters and their distal regulatory elements play an important role in transcriptional regulation; however, the extent to which these interactions are subject to rapid modulations in response to signals is unknown. Here, we use promoter capture Hi-C to demonstrate a rapid reorganization of promoter-anchored chromatin loops within 4 hr after inducing differentiation of 3T3-L1 preadipocytes. The establishment of new promoter-enhancer loops is tightly coupled to activation of poised (histone H3 lysine 4 mono- and dimethylated) enhancers, as evidenced by the acquisition of histone H3 lysine 27 acetylation and the binding of MED1, SMC1, and P300 proteins to these regions, as well as to activation of target genes. Intriguingly, formation of loops connecting activated enhancers and promoters is also associated with extensive recruitment of corepressors such as NCoR and HDACs, indicating that this class of coregulators may play a previously unrecognized role during enhancer activation.


Assuntos
Adipócitos/metabolismo , Adipogenia , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Regiões Promotoras Genéticas , Células 3T3-L1 , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Elementos Facilitadores Genéticos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional
2.
PLoS Genet ; 16(5): e1008770, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453730

RESUMO

Hormone-dependent activation of enhancers includes histone hyperacetylation and mediator recruitment. Histone hyperacetylation is mostly explained by a bimodal switch model, where histone deacetylases (HDACs) disassociate from chromatin, and histone acetyl transferases (HATs) are recruited. This model builds on decades of research on steroid receptor regulation of transcription. Yet, the general concept of the bimodal switch model has not been rigorously tested genome wide. We have used a genomics approach to study enhancer hyperacetylation by the thyroid hormone receptor (TR), described to operate as a bimodal switch. H3 acetylation, HAT and HDAC ChIP-seq analyses of livers from hypo- and hyperthyroid wildtype, TR deficient and NCOR1 disrupted mice reveal three types of thyroid hormone (T3)-regulated enhancers. One subset of enhancers is bound by HDAC3-NCOR1 in the absence of hormone and constitutively occupy TR and HATs irrespective of T3 levels, suggesting a poised enhancer state in absence of hormone. In presence of T3, HDAC3-NCOR1 dissociates from these enhancers leading to histone hyperacetylation, suggesting a histone acetylation rheostat function of HDACs at poised enhancers. Another subset of enhancers, not occupied by HDACs, is hyperacetylated in a T3-dependent manner, where TR is recruited to chromatin together with HATs. Lastly, a subset of enhancers, is not occupied directly by TR yet requires TR for histone hyperacetylation. This indirect enhancer activation involves co-association with TR bound enhancers within super-enhancers or topological associated domains. Collectively, this demonstrates various mechanisms controlling hormone-dependent transcription and adds significant details to the otherwise simple bimodal switch model.


Assuntos
Elementos Facilitadores Genéticos/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Receptores dos Hormônios Tireóideos/genética , Hormônios Tireóideos/farmacologia , Acetilação , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Fígado/química , Masculino , Camundongos , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo
3.
Genes Dev ; 29(1): 7-22, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25504365

RESUMO

Long-term exposure to peroxisome proliferator-activated receptor γ (PPARγ) agonists such as rosiglitazone induces browning of rodent and human adipocytes; however, the transcriptional mechanisms governing this phenotypic switch in adipocytes are largely unknown. Here we show that rosiglitazone-induced browning of human adipocytes activates a comprehensive gene program that leads to increased mitochondrial oxidative capacity. Once induced, this gene program and oxidative capacity are maintained independently of rosiglitazone, suggesting that additional browning factors are activated. Browning triggers reprogramming of PPARγ binding, leading to the formation of PPARγ "superenhancers" that are selective for brown-in-white (brite) adipocytes. These are highly associated with key brite-selective genes. Based on such an association, we identified an evolutionarily conserved metabolic regulator, Kruppel-like factor 11 (KLF11), as a novel browning transcription factor in human adipocytes that is required for rosiglitazone-induced browning, including the increase in mitochondrial oxidative capacity. KLF11 is directly induced by PPARγ and appears to cooperate with PPARγ in a feed-forward manner to activate and maintain the brite-selective gene program.


Assuntos
Adipócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Repressoras/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos Marrons/citologia , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular/genética , Reprogramação Celular , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Hipoglicemiantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Oxirredução , Ligação Proteica , Proteínas Repressoras/genética , Rosiglitazona , Tiazolidinedionas/farmacologia , Ativação Transcricional/efeitos dos fármacos
4.
Hepatology ; 72(6): 2119-2133, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32145072

RESUMO

BACKGROUND AND AIMS: Hepatic sinusoidal cells are known actors in the fibrogenic response to injury. Activated hepatic stellate cells (HSCs), liver sinusoidal endothelial cells, and Kupffer cells are responsible for sinusoidal capillarization and perisinusoidal matrix deposition, impairing vascular exchange and heightening the risk of advanced fibrosis. While the overall pathogenesis is well understood, functional relations between cellular transitions during fibrogenesis are only beginning to be resolved. At single-cell resolution, we here explored the heterogeneity of individual cell types and dissected their transitions and crosstalk during fibrogenesis. APPROACH AND RESULTS: We applied single-cell transcriptomics to map the heterogeneity of sinusoid-associated cells in healthy and injured livers and reconstructed the single-lineage HSC trajectory from pericyte to myofibroblast. Stratifying each sinusoidal cell population by activation state, we projected shifts in sinusoidal communication upon injury. Weighted gene correlation network analysis of the HSC trajectory led to the identification of core genes whose expression proved highly predictive of advanced fibrosis in patients with nonalcoholic steatohepatitis (NASH). Among the core members of the injury-repressed gene module, we identified plasmalemma vesicle-associated protein (PLVAP) as a protein amply expressed by mouse and human HSCs. PLVAP expression was suppressed in activated HSCs upon injury and may hence define hitherto unknown roles for HSCs in the regulation of microcirculatory exchange and its breakdown in chronic liver disease. CONCLUSIONS: Our study offers a single-cell resolved account of drug-induced injury of the mammalian liver and identifies key genes that may serve important roles in sinusoidal integrity and as markers of advanced fibrosis in human NASH.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Células Endoteliais/patologia , Redes Reguladoras de Genes , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Animais , Biópsia , Capilares/citologia , Capilares/patologia , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Feminino , Veias Hepáticas/citologia , Veias Hepáticas/patologia , Humanos , Fígado/irrigação sanguínea , Fígado/patologia , Cirrose Hepática/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA-Seq , Análise de Célula Única
5.
PLoS Biol ; 16(12): e2006249, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30532187

RESUMO

Hepatic circadian gene transcription is tightly coupled to feeding behavior, which has a profound impact on metabolic disorders associated with diet-induced obesity. Here, we describe a genomics approach to uncover mechanisms controlling hepatic postprandial gene expression. Combined transcriptomic and cistromic analysis identified hundreds of circadian-regulated genes and enhancers controlled by feeding. Postprandial suppression of enhancer activity was associated with reduced glucocorticoid receptor (GR) and Forkhead box O1 (FOXO1) occupancy of chromatin correlating with reduced serum corticosterone levels and increased serum insulin levels. Despite substantial co-occupancy of feeding-regulated enhancers by GR and FOXO1, selective disruption of corticosteroid and/or insulin signaling resulted in dysregulation of specific postprandial regulated gene programs. In combination, these signaling pathways operate a major part of the genes suppressed by feeding. Importantly, the feeding response was disrupted in diet-induced obese animals, which was associated with dysregulation of several corticosteroid- and insulin-regulated genes, providing mechanistic insights to dysregulated circadian gene transcription associated with obesity.


Assuntos
Insulina/metabolismo , Período Pós-Prandial/genética , Receptores de Glucocorticoides/metabolismo , Animais , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Insulina/genética , Resistência à Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de Glucocorticoides/genética , Transdução de Sinais/efeitos dos fármacos
6.
Nucleic Acids Res ; 45(4): 1743-1759, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27899593

RESUMO

The KDM5 family of histone demethylases removes the H3K4 tri-methylation (H3K4me3) mark frequently found at promoter regions of actively transcribed genes and is therefore generally considered to contribute to corepression. In this study, we show that knockdown (KD) of all expressed members of the KDM5 family in white and brown preadipocytes leads to deregulated gene expression and blocks differentiation to mature adipocytes. KDM5 KD leads to a considerable increase in H3K4me3 at promoter regions; however, these changes in H3K4me3 have a limited effect on gene expression per se. By contrast, genome-wide analyses demonstrate that KDM5A is strongly enriched at KDM5-activated promoters, which generally have high levels of H3K4me3 and are associated with highly expressed genes. We show that KDM5-activated genes include a large set of cell cycle regulators and that the KDM5s are necessary for mitotic clonal expansion in 3T3-L1 cells, indicating that KDM5 KD may interfere with differentiation in part by impairing proliferation. Notably, the demethylase activity of KDM5A is required for activation of at least a subset of pro-proliferative cell cycle genes. In conclusion, the KDM5 family acts as dual modulators of gene expression in preadipocytes and is required for early stage differentiation and activation of pro-proliferative cell cycle genes.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica , Histona Desmetilases/genética , Família Multigênica , Adipogenia/genética , Animais , Linhagem Celular , Proliferação de Células , Ativação Enzimática , Histona Desmetilases/metabolismo , Histonas/metabolismo , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica
7.
Genome Res ; 25(9): 1281-94, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26113076

RESUMO

The proinflammatory cytokine tumor necrosis factor (TNF) plays a central role in low-grade adipose tissue inflammation and development of insulin resistance during obesity. In this context, nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) is directly involved and required for the acute activation of the inflammatory gene program. Here, we show that the major transactivating subunit of NFκB, v-rel avian reticuloendotheliosis viral oncogene homolog A (RELA), is also required for acute TNF-induced suppression of adipocyte genes. Notably, this repression does not involve RELA binding to the associated enhancers but rather loss of cofactors and enhancer RNA (eRNA) selectively from high-occupancy sites within super-enhancers. Based on these data, we have developed models that, with high accuracy, predict which enhancers and genes are repressed by TNF in adipocytes. We show that these models are applicable to other cell types where TNF represses genes associated with super-enhancers in a highly cell-type-specific manner. Our results propose a novel paradigm for NFκB-mediated repression, whereby NFκB selectively redistributes cofactors from high-occupancy enhancers, thereby specifically repressing super-enhancer-associated cell identity genes.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular , Reprogramação Celular/genética , Humanos , Subunidade 1 do Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/genética , Ligação Proteica , Transporte Proteico , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
8.
Nucleic Acids Res ; 43(6): e40, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25564527

RESUMO

RNA-seq is a sensitive and accurate technique to compare steady-state levels of RNA between different cellular states. However, as it does not provide an account of transcriptional activity per se, other technologies are needed to more precisely determine acute transcriptional responses. Here, we have developed an easy, sensitive and accurate novel computational method, IRNA-SEQ: , for genome-wide assessment of transcriptional activity based on analysis of intron coverage from total RNA-seq data. Comparison of the results derived from iRNA-seq analyses with parallel results derived using current methods for genome-wide determination of transcriptional activity, i.e. global run-on (GRO)-seq and RNA polymerase II (RNAPII) ChIP-seq, demonstrate that iRNA-seq provides similar results in terms of number of regulated genes and their fold change. However, unlike the current methods that are all very labor-intensive and demanding in terms of sample material and technologies, iRNA-seq is cheap and easy and requires very little sample material. In conclusion, iRNA-seq offers an attractive novel alternative to current methods for determination of changes in transcriptional activity at a genome-wide level.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Linhagem Celular , Imunoprecipitação da Cromatina/métodos , Imunoprecipitação da Cromatina/estatística & dados numéricos , Perfilação da Expressão Gênica/estatística & dados numéricos , Regulação da Expressão Gênica , Genoma Humano , Humanos , Íntrons , Análise de Sequência de RNA/estatística & dados numéricos
9.
EMBO J ; 30(8): 1459-72, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21427703

RESUMO

Adipogenesis is tightly controlled by a complex network of transcription factors acting at different stages of differentiation. Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBP) family members are key regulators of this process. We have employed DNase I hypersensitive site analysis to investigate the genome-wide changes in chromatin structure that accompany the binding of adipogenic transcription factors. These analyses revealed a dramatic and dynamic modulation of the chromatin landscape during the first hours of adipocyte differentiation that coincides with cooperative binding of multiple early transcription factors (including glucocorticoid receptor, retinoid X receptor, Stat5a, C/EBPß and -δ) to transcription factor 'hotspots'. Our results demonstrate that C/EBPß marks a large number of these transcription factor 'hotspots' before induction of differentiation and chromatin remodelling and is required for their establishment. Furthermore, a subset of early remodelled C/EBP-binding sites persists throughout differentiation and is later occupied by PPARγ, indicating that early C/EBP family members, in addition to their well-established role in activation of PPARγ transcription, may act as pioneering factors for PPARγ binding.


Assuntos
Adipogenia/fisiologia , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Algoritmos , Animais , Western Blotting , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Imunoprecipitação da Cromatina , Camundongos , RNA Mensageiro/genética , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Mol Genet Metab ; 110(1-2): 65-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23830478

RESUMO

Dried blood spot samples (DBSS) have been collected and stored for decades as part of newborn screening programmes worldwide. Representing almost an entire population under a certain age and collected with virtually no bias, the Newborn Screening Biobanks are of immense value in medical studies, for example, to examine the genetics of various disorders. We have previously demonstrated that DNA extracted from a fraction (2×3.2mm discs) of an archived DBSS can be whole genome amplified (wgaDNA) and used for accurate array genotyping. However, until now, it has been uncertain whether wgaDNA from DBSS can be used for accurate whole genome sequencing (WGS) and exome sequencing (WES). This study examined two individuals represented by three different types of samples each: whole-blood (reference samples), 3-year-old DBSS spotted with reference material (refDBSS), and 27- to 29-year-old archived neonatal DBSS (neoDBSS) stored at -20°C in the Danish Newborn Screening Biobank. The reference samples were genotyped using an Illumina Omni2.5M array, and all samples were sequenced on a HighSeq2000 Paired-End flow cell. First, we compared the array single nucleotide polymorphism (SNP) genotype data to the single nucleotide variation (SNV) calls from the WGS and WES SNV calls. We also compared the WGS and WES reference sample SNV calls to the DBSS SNV calls. The overall performance of the archived DBSS was similar to the whole blood reference sample. Plotting the error rates relative to coverage revealed that the error rates of DBSS were similar to that of their reference samples. SNVs called with a coverage<×8 had error rates between 1.5 and 35%, whereas the error rates of SNVs called with a coverage≥8 were <1.5%. In conclusion, the wgaDNA amplified from both new and old neonatal DBSS perform as well as their whole-blood reference samples with regards to error rates, strongly indicating that neonatal DBSS collected shortly after birth and stored for decades comprise an excellent resource for NGS studies of disease.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Triagem Neonatal , Bancos de Espécimes Biológicos , Genoma Humano , Genótipo , Humanos , Recém-Nascido , Masculino , Polimorfismo de Nucleotídeo Único/genética , Manejo de Espécimes
11.
BMC Genomics ; 12: 152, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21410980

RESUMO

BACKGROUND: The transcription factors peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key transcriptional regulators of adipocyte differentiation and function. We and others have previously shown that binding sites of these two transcription factors show a high degree of overlap and are associated with the majority of genes upregulated during differentiation of murine 3T3-L1 adipocytes. RESULTS: Here we have mapped all binding sites of C/EBPα and PPARγ in human SGBS adipocytes and compared these with the genome-wide profiles from mouse adipocytes to systematically investigate what biological features correlate with retention of sites in orthologous regions between mouse and human. Despite a limited interspecies retention of binding sites, several biological features make sites more likely to be retained. First, co-binding of PPARγ and C/EBPα in mouse is the most powerful predictor of retention of the corresponding binding sites in human. Second, vicinity to genes highly upregulated during adipogenesis significantly increases retention. Third, the presence of C/EBPα consensus sites correlate with retention of both factors, indicating that C/EBPα facilitates recruitment of PPARγ. Fourth, retention correlates with overall sequence conservation within the binding regions independent of C/EBPα and PPARγ sequence patterns, indicating that other transcription factors work cooperatively with these two key transcription factors. CONCLUSIONS: This study provides a comprehensive and systematic analysis of what biological features impact on retention of binding sites between human and mouse. Specifically, we show that the binding of C/EBPα and PPARγ in adipocytes have evolved in a highly interdependent manner, indicating a significant cooperativity between these two transcription factors.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Perfilação da Expressão Gênica , PPAR gama/genética , Células 3T3-L1 , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Sequência Consenso , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Análise de Sequência de DNA
12.
J Virol ; 84(6): 2946-54, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20042507

RESUMO

Human cytomegalovirus (HCMV) contributes to pathogenic processes in immunosuppressed individuals, in fetuses, and in neonates. In the present report, by using reporter gene activation assays and confocal microscopy in the presence of a specific antagonist, we show for the first time that HCMV infection induces peroxisome proliferator-activated receptor gamma (PPARgamma) transcriptional activity in infected cells. We demonstrate that the PPARgamma antagonist dramatically impairs virus production and that the major immediate-early promoter contains PPAR response elements able to bind PPARgamma, as assessed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Due to the key role of PPARgamma in placentation and its specific trophoblast expression within the human placenta, we then provided evidence that by activating PPARgamma human cytomegalovirus dramatically impaired early human trophoblast migration and invasiveness, as assessed by using well-established in vitro models of invasive trophoblast, i.e., primary cultures of extravillous cytotrophoblasts (EVCT) isolated from first-trimester placentas and the EVCT-derived cell line HIPEC. Our data provide new clues to explain how early infection during pregnancy could impair implantation and placentation and therefore embryonic development.


Assuntos
Movimento Celular/fisiologia , Citomegalovirus/metabolismo , PPAR gama/metabolismo , Placenta/citologia , Trofoblastos/fisiologia , Trofoblastos/virologia , Replicação Viral/fisiologia , Sequência de Bases , Células Cultivadas , Citomegalovirus/genética , Implantação do Embrião/fisiologia , Feminino , Idade Gestacional , Humanos , Dados de Sequência Molecular , PPAR gama/genética , Gravidez , Transcrição Gênica , Trofoblastos/citologia
13.
STAR Protoc ; 2(3): 100612, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34189477

RESUMO

Lipid-filled adipocytes are incompatible with droplet-based single-cell methods, such as 10x Genomics-based technology, thus restricting droplet-based single-cell analyses of adipose tissues to the stromal vascular fraction. To overcome this limitation and obtain cellular and molecular insight into adipose tissue composition and plasticity, single-nucleus sequencing-based technologies can be applied. Here, we provide an optimized protocol for nuclei isolation from mouse adipose tissues suitable for single-nucleus RNA sequencing. This allows for transcriptomic profiling of the entire adipose tissue at single-cell resolution. For complete details on the use of this protocol, please refer to Sárvári et al., 2021.


Assuntos
Tecido Adiposo Branco/metabolismo , Núcleo Celular/metabolismo , Genômica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Análise de Célula Única/métodos
14.
Sci Rep ; 11(1): 6037, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727596

RESUMO

Staphylococcus aureus is the cause of serious vascular infections such as sepsis and endocarditis. These infections are notoriously difficult to treat, and it is believed that the ability of S. aureus to invade endothelial cells and persist intracellularly is a key mechanism for persistence despite ongoing antibiotic treatment. Here, we used dual RNA sequencing to study the simultaneous transcriptional response of S. aureus and human endothelial cells during in vitro infections. We revealed discrete and shared differentially expressed genes for both host and pathogen at the different stages of infection. While the endothelial cells upregulated genes involved in interferon signalling and antigen presentation during late infection, S. aureus downregulated toxin expression while upregulating genes related to iron scavenging. In conclusion, the presented data provide an important resource to facilitate functional investigations into host-pathogen interaction during S. aureus invasive infection and a basis for identifying novel drug target sites.


Assuntos
Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Transcrição Gênica , Regulação para Cima , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos
15.
Cell Metab ; 33(2): 437-453.e5, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33378646

RESUMO

Adipose tissues display a remarkable ability to adapt to the dietary status. Here, we have applied single-nucleus RNA-seq to map the plasticity of mouse epididymal white adipose tissue at single-nucleus resolution in response to high-fat-diet-induced obesity. The single-nucleus approach allowed us to recover all major cell types and to reveal distinct transcriptional stages along the entire adipogenic trajectory from preadipocyte commitment to mature adipocytes. We demonstrate the existence of different adipocyte subpopulations and show that obesity leads to disappearance of the lipogenic subpopulation and increased abundance of the stressed lipid-scavenging subpopulation. Moreover, obesity is associated with major changes in the abundance and gene expression of other cell populations, including a dramatic increase in lipid-handling genes in macrophages at the expense of macrophage-specific genes. The data provide a powerful resource for future hypothesis-driven investigations of the mechanisms of adipocyte differentiation and adipose tissue plasticity.


Assuntos
Tecido Adiposo/metabolismo , Obesidade/metabolismo , Adipogenia/genética , Animais , Plasticidade Celular , Dieta Hiperlipídica , Camundongos , Obesidade/induzido quimicamente , Obesidade/genética , Análise de Sequência de RNA
16.
J Biol Chem ; 284(39): 26385-93, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19633298

RESUMO

The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPARgamma target genes that may contribute to the reduction of circulating free fatty acids after TZD treatment have been identified, the relevant PPARgamma target genes that may exert the anti-lipolytic effect of TZDs are unknown. Here we identified the anti-lipolytic human G-protein-coupled receptor 81 (GPR81), GPR109A, and the (human-specific) GPR109B genes as well as the mouse Gpr81 and Gpr109A genes as novel TZD-induced genes in mature adipocytes. GPR81/Gpr81 is a direct PPARgamma target gene, because mRNA expression of GPR81/Gpr81 (and GPR109A/Gpr109A) increased in mature human and murine adipocytes as well as in vivo in epididymal fat pads of mice upon rosiglitazone stimulation, whereas small interfering RNA-mediated knockdown of PPARgamma in differentiated 3T3-L1 adipocytes showed a significant decrease in Gpr81 protein expression. In addition, chromatin immunoprecipitation sequencing analysis in differentiated 3T3-L1 cells revealed a conserved PPAR:retinoid X receptor-binding site in the proximal promoter of the Gpr81 gene, which was proven to be functional by electromobility shift assay and reporter assays. Importantly, small interfering RNA-mediated knockdown of Gpr81 partly reversed the inhibitory effect of TZDs on lipolysis in 3T3-L1 adipocytes. The coordinated PPARgamma-mediated regulation of the GPR81/Gpr81 and GPR109A/Gpr109A genes (and GPR109B in humans) presents a novel mechanism by which TZDs may reduce circulating free fatty acid levels and perhaps ameliorate insulin resistance in obese patients.


Assuntos
Adipócitos/metabolismo , Regulação da Expressão Gênica , PPAR gama/genética , Receptores Acoplados a Proteínas G/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Sequência de Bases , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Humanos , Camundongos , Camundongos Endogâmicos , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/agonistas , PPAR gama/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Homologia de Sequência do Ácido Nucleico , Tiazolidinedionas/farmacologia
17.
Nutrients ; 12(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993128

RESUMO

Long-chain n-3 polyunsaturated fatty acids (n-3 LC-PUFAs) are collectively recognized triglyceride-lowering agents, and their preventive action is likely mediated by changes in gene expression. However, as most studies employ fish oil, which contains a mixture of n-3 LC-PUFAs, the docosahexaenoic acid (DHA)-specific transcriptional effects on lipid metabolism are still unclear. The aim of the present study was to further elucidate the DHA-induced transcriptional effects on lipid metabolism in the liver, and to investigate the effects of co-administration with other bioactive compounds having effects on lipid metabolism. To this purpose, HepG2 cells were treated for 6 or 24 h with DHA, the short-chain fatty acid propionate (PRO), and protocatechuic acid (PCA), the main human metabolite of cyanidin-glucosides. Following supplementation, we mapped the global transcriptional changes. PRO and PCA alone had a very slight effect on the transcriptome; on the contrary, supplementation of DHA highly repressed the steroid and fatty acid biosynthesis pathways, this transcriptional modulation being not affected by co-supplementation. Our results confirm that DHA effect on lipid metabolism are mediated at least in part by modulation of the expression of specific genes. PRO and PCA could contribute to counteracting dyslipidemia through other mechanisms.


Assuntos
Células Cultivadas/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Hepatócitos/efeitos dos fármacos , Hidroxibenzoatos/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Propionatos/administração & dosagem , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Óleos de Peixe/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Transcriptoma
18.
Mol Cell Biol ; 26(15): 5698-714, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16847324

RESUMO

Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARgamma2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARgamma2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (alpha, gamma, and beta/delta), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci.


Assuntos
Adenoviridae/genética , Técnicas de Transferência de Genes , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/metabolismo , Ativação Transcricional , Transgenes , Adenoviridae/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores Ativados por Proliferador de Peroxissomo/genética , Isoformas de Proteínas/genética
19.
Ugeskr Laeger ; 181(2)2019 Jan 07.
Artigo em Dinamarquês | MEDLINE | ID: mdl-30618370

RESUMO

This review states the reasons for considering screening for intracranial aneurysms in Denmark: if patients have two first-degree relatives with intracranial aneurysms, are 30-70 years old, do not have competing disorders, which could significantly shorten life expectancy, and subsequently in patients with autosomal dominant kidney disease and a family history of subarachnoid haemorrhage. MR angiography should be the imaging study of choice, unless contraindicated. Generally, the ethical consequences ought to be considered before carrying out screening.


Assuntos
Aneurisma Intracraniano/diagnóstico , Angiografia por Ressonância Magnética/métodos , Programas de Rastreamento/métodos , Dinamarca , Humanos , Aneurisma Intracraniano/complicações , Angiografia por Ressonância Magnética/ética , Programas de Rastreamento/ética , Fatores de Risco
20.
Nat Genet ; 51(4): 716-727, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833796

RESUMO

Mesenchymal (stromal) stem cells (MSCs) constitute populations of mesodermal multipotent cells involved in tissue regeneration and homeostasis in many different organs. Here we performed comprehensive characterization of the transcriptional and epigenomic changes associated with osteoblast and adipocyte differentiation of human MSCs. We demonstrate that adipogenesis is driven by considerable remodeling of the chromatin landscape and de novo activation of enhancers, whereas osteogenesis involves activation of preestablished enhancers. Using machine learning algorithms for in silico modeling of transcriptional regulation, we identify a large and diverse transcriptional network of pro-osteogenic and antiadipogenic transcription factors. Intriguingly, binding motifs for these factors overlap with SNPs related to bone and fat formation in humans, and knockdown of single members of this network is sufficient to modulate differentiation in both directions, thus indicating that lineage determination is a delicate balance between the activities of many different transcription factors.


Assuntos
Adipogenia/genética , Osteogênese/genética , Fator de Células-Tronco/genética , Fatores de Transcrição/genética , Células A549 , Adipócitos/fisiologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA