Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biotechnol Bioeng ; 118(8): 3175-3186, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34076888

RESUMO

Cultivated meat is an emerging field, aiming to establish the production of animal tissue for human consumption in an in vitro environment, eliminating the need to raise and slaughter animals for their meat. To realise this, the expansion of primary cells in a bioreactor is needed to achieve the high cell numbers required. The aim of this study was to develop a scalable, microcarrier based, intensified bioprocess for the expansion of bovine adipose-derived stem cells as precursors of fat and muscle tissue. The intensified bioprocess development was carried out initially in spinner flasks of different sizes and then translated to fully controlled litre scale benchtop bioreactors. Bioprocess intensification was achieved by utilising the previously demonstrated bead-to-bead transfer phenomenon and through the combined addition of microcarrier and medium to double the existing surface area and working volume in the bioreactor. Choosing the optimal time point for the additions was critical in enhancing the cell expansion. A significant fold increase of 114.19 ± 1.07 was obtained at the litre scale in the intensified bioprocess compared to the baseline (**p < .005). The quality of the cells was evaluated pre- and post-expansion and the cells were found to maintain their phenotype and differentiation capacity.


Assuntos
Tecido Adiposo , Reatores Biológicos , Técnicas de Cultura de Células , Proliferação de Células , Células-Tronco , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Bovinos , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
Biotechnol Lett ; 43(5): 1103-1116, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33528693

RESUMO

The emergence of cell and gene therapies has generated significant interest in their clinical and commercial potential. However, these therapies are prohibitively expensive to manufacture and can require extensive time for development due to our limited process knowledge and understanding. The automated ambr250® stirred-tank bioreactor platform provides an effective platform for high-throughput process development. However, the original dual pitched-blade 20 mm impeller and baffles proved sub-optimal for cell therapy candidates that require suspension of microcarriers (e.g. for the culture of adherent human mesenchymal stem cells) or other particles such as activating Dynabeads® (e.g. for the culture of human T-cells). We demonstrate the development of a new ambr250® stirred-tank bioreactor vessel which has been designed specifically to improve the suspension of microcarriers/beads and thereby improve the culture of such cellular systems. The new design is unbaffled and has a single, larger elephant ear impeller. We undertook a range of engineering and physical characterizations to determine which vessel and impeller configuration would be most suitable for suspension based on the minimum agitation speed (NJS) and associated specific power input (P/V)JS. A vessel (diameter, T, = 60 mm) without baffles and incorporating a single elephant ear impeller (diameter 30 mm and 45° pitch-blade angle) was selected as it had the lowest (P/V)JS and therefore potentially, based on Kolmogorov concepts, was the most flexible system. These experimentally-based conclusions were further validated firstly with computational fluid dynamic (CFD) simulations and secondly experimental studies involving the culture of both T-cells with Dynabeads® and hMSCs on microcarriers. The new ambr250® stirred-tank bioreactor successfully supported the culture of both cell types, with the T-cell culture demonstrating significant improvements compared to the original ambr250® and the hMSC-microcarrier culture gave significantly higher yields compared with spinner flask cultures. The new ambr250® bioreactor vessel design is an effective process development tool for cell and gene therapy candidates and potentially for autologous manufacture too.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Automação , Contagem de Células , Células Cultivadas , Desenho de Equipamento , Humanos , Hidrodinâmica , Células-Tronco Mesenquimais/citologia , Linfócitos T/citologia
3.
J Chem Technol Biotechnol ; 96(4): 930-940, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33776183

RESUMO

BACKGROUND: Traditional large-scale culture systems for human mesenchymal stem/stromal cells (hMSCs) use solid microcarriers as attachment substrates. Although the use of such substrates is advantageous because of the high surface-to-volume ratio, cell harvest from the same substrates is a challenge as it requires enzymatic treatment, often combined with agitation. Here, we investigated a two-phase system for expansion and non-enzymatic recovery of hMSCs. Perfluorocarbon droplets were dispersed in a protein-rich growth medium and were used as temporary liquid microcarriers for hMSC culture. RESULTS: hMSCs successfully attached to these liquid microcarriers, exhibiting similar morphologies to those cultured on solid ones. Fold increases of 3.03 ± 0.98 (hMSC1) and 3.81 ± 0.29 (hMSC2) were achieved on day 9. However, the maximum expansion folds were recorded on day 4 (4.79 ± 0.47 (hMSC1) and 4.856 ± 0.7 (hMSC2)). This decrease was caused by cell aggregation upon reaching confluency due to the contraction of the interface between the two phases. Cell quality, as assessed by differentiation, cell surface marker expression and clonogenic ability, was retained post expansion on the liquid microcarriers. Cell harvesting was achieved non-enzymatically in two steps: first by inducing droplet coalescence and then aspirating the interface. Quality characteristics of hMSCs continued to be retained even after inducing droplet coalescence. CONCLUSION: The prospect of a temporary microcarrier that can be used to expand cells and then 'disappear' for cell release without using proteolytic enzymes is a very exciting one. Here, we have demonstrated that hMSCs can attach and proliferate on these perfluorocarbon liquid microcarriers while, very importantly, retaining their quality.

4.
Biotechnol Bioeng ; 116(10): 2488-2502, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184370

RESUMO

Advanced cell and gene therapies such as chimeric antigen receptor T-cell immunotherapies (CAR-T), present a novel therapeutic modality for the treatment of acute and chronic conditions including acute lymphoblastic leukemia and non-Hodgkin lymphoma. However, the development of such immunotherapies requires the manufacture of large numbers of T-cells, which remains a major translational and commercial bottleneck due to the manual, small-scale, and often static culturing systems used for their production. Such systems are used because there is an unsubstantiated concern that primary T-cells are shear sensitive, or prefer static conditions, and therefore do not grow as effectively in more scalable, agitated systems, such as stirred-tank bioreactors, as compared with T-flasks and culture bags. In this study, we demonstrate that not only T-cells can be cultivated in an automated stirred-tank bioreactor system (ambr® 250), but that their growth is consistently and significantly better than that in T-flask static culture, with equivalent cell quality. Moreover, we demonstrate that at progressively higher agitation rates over the range studied here, and thereby, higher specific power inputs (P/M W kg-1 ), the higher the final viable T-cell density; that is, a cell density of 4.65 ± 0.24 × 106 viable cells ml-1 obtained at the highest P/M of 74 × 10-4 W kg-1 in comparison with 0.91 ± 0.07 × 106 viable cells ml-1 at the lowest P/M of 3.1 × 10-4 W kg-1 . We posit that this improvement is due to the inability at the lower agitation rates to effectively suspend the Dynabeads®, which are required to activate the T-cells; and that contact between them is improved at the higher agitation rates. Importantly, from the data obtained, there is no indication that T-cells prefer being grown under static conditions or are sensitive to fluid dynamic stresses within a stirred-tank bioreactor system at the agitation speeds investigated. Indeed, the opposite has proven to be the case, whereby, the cells grow better under higher agitation speeds while maintaining their quality. This study is the first demonstration of primary T-cell ex vivo manufacture activated by Dynabeads® in an automated stirred-tank bioreactor system such as the ambr® 250 and the findings have the potential to be applied to multiple other cell candidates for advanced therapy applications.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Linfócitos T/metabolismo , Células Cultivadas , Humanos , Linfócitos T/citologia
5.
Biotechnol Bioeng ; 114(10): 2253-2266, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28627713

RESUMO

Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high-throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum-based medium was applied to a serum-free process in the ambr15, resulting in >250% increase in yield compared to the serum-based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, NJS . The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06-0.54%, respectively. The combination of both serum-free and automated processing improved the reproducibility more than 10-fold compared to the serum-based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum-free medium, control, and automation improves both process yield and consistency. Biotechnol. Bioeng. 2017;114: 2253-2266. © 2017 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microfluídica/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Técnicas de Cultura de Células/métodos , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultura Livres de Soro/metabolismo , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Microfluídica/métodos , Miniaturização , Projetos Piloto , Robótica/instrumentação
6.
J Chem Technol Biotechnol ; 92(7): 1577-1589, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28706339

RESUMO

BACKGROUND: Human mesenchymal stem/stromal cells (hMSCs) are at the forefront of regenerative medicine applications due to their relatively easy isolation and availability in adults, potential to differentiate and to secrete a range of trophic factors that could determine specialised tissue regeneration. To date, hMSCs have been successfully cultured in vitro on substrates such as polystyrene dishes (TCPS) or microcarriers. However, hMSC sub-cultivation and harvest typically employs proteolytic enzymes that act by cleaving important cell membrane proteins resulting in long-term cell damage. In a process where the cells themselves are the product, a non-enzymatic and non-damaging harvesting approach is desirable. RESULTS: An alternative system for hMSC expansion and subsequent non-enzymatic harvest was investigated here. A liquid/liquid two-phase system was proposed, comprising a selected perfluorocarbon (FC40) and growth medium (DMEM). The cells exhibited similar cell morphologies compared with TCPS. Moreover, they retained their identity and differentiation potential post-expansion and post-harvest. Further, no significant difference was found when culturing hMSCs in the culture systems prepared with either fresh or recycled FC40 perfluorocarbon. CONCLUSIONS: These findings make the FC40/DMEM system an attractive alternative for traditional cell culture substrates due to their ease of cell recovery and recyclability, the latter impacting on overall process costs. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
Cytotherapy ; 18(4): 523-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26971681

RESUMO

BACKGROUND AIMS: The selection of medium and associated reagents for human mesenchymal stromal cell (hMSC) culture forms an integral part of manufacturing process development and must be suitable for multiple process scales and expansion technologies. METHODS: In this work, we have expanded BM-hMSCs in fetal bovine serum (FBS)- and human platelet lysate (HPL)-containing media in both a monolayer and a suspension-based microcarrier process. RESULTS: The introduction of HPL into the monolayer process increased the BM-hMSC growth rate at the first experimental passage by 0.049 day and 0.127/day for the two BM-hMSC donors compared with the FBS-based monolayer process. This increase in growth rate in HPL-containing medium was associated with an increase in the inter-donor consistency, with an inter-donor range of 0.406 cumulative population doublings after 18 days compared with 2.013 in FBS-containing medium. Identity and quality characteristics of the BM-hMSCs are also comparable between conditions in terms of colony-forming potential, osteogenic potential and expression of key genes during monolayer and post-harvest from microcarrier expansion. BM-hMSCs cultured on microcarriers in HPL-containing medium demonstrated a reduction in the initial lag phase for both BM-hMSC donors and an increased BM-hMSC yield after 6 days of culture to 1.20 ± 0.17 × 10(5) and 1.02 ± 0.005 × 10(5) cells/mL compared with 0.79 ± 0.05 × 10(5) and 0.36 ± 0.04 × 10(5) cells/mL in FBS-containing medium. CONCLUSIONS: This study has demonstrated that HPL, compared with FBS-containing medium, delivers increased growth and comparability across two BM-hMSC donors between monolayer and microcarrier culture, which will have key implications for process transfer during scale-up.


Assuntos
Plaquetas/citologia , Técnicas de Cultura de Células/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Microtecnologia/métodos , Alicerces Teciduais , Animais , Bovinos , Proliferação de Células , Células Cultivadas , Humanos , Pesquisa Translacional Biomédica
8.
Cytotherapy ; 17(11): 1524-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26432558

RESUMO

BACKGROUND AIMS: The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. METHODS: Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. RESULTS: Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter-batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XV SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence through a correlation (R(2) = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. CONCLUSIONS: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Tamanho Celular , Meios de Cultura/química , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteogênese
9.
Biotechnol Bioeng ; 112(8): 1696-707, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25727395

RESUMO

Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot-sizes required for commercial production. The use of animal-derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot-to-lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large-scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum-free hMSC manufacturing process. Human bone-marrow derived hMSCs were expanded on fibronectin-coated, non-porous plastic microcarriers in 100 mL stirred spinner flasks at a density of 3 × 10(5) cells.mL(-1) in serum-free medium. The hMSCs were successfully harvested by our recently-developed technique using animal-free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post-harvest viability of 99.63 ± 0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony-forming potential. The hMSCs were held in suspension post-harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum-free vehicle solution using a controlled-rate freezing process. Post-thaw viability was 75.8 ± 1.4% with a similar 3 h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component-free hMSC production process from expansion through to cryopreservation.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Criopreservação/métodos , Meios de Cultura Livres de Soro/química , Células-Tronco Mesenquimais/fisiologia , Microesferas , Preservação Biológica/métodos , Sobrevivência Celular , Humanos , Projetos Piloto , Células-Tronco
10.
Biotechnol Lett ; 35(8): 1233-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23609232

RESUMO

For the first time, fully functional human mesenchymal stem cells (hMSCs) have been cultured at the litre-scale on microcarriers in a stirred-tank 5 l bioreactor, (2.5 l working volume) and were harvested via a potentially scalable detachment protocol that allowed for the successful detachment of hMSCs from the cell-microcarrier suspension. Over 12 days, the dissolved O2 concentration was >45 % of saturation and the pH between 7.2 and 6.7 giving a maximum cell density in the 5 l bioreactor of 1.7 × 10(5) cells/ml; this represents >sixfold expansion of the hMSCs, equivalent to that achievable from 65 fully-confluent T-175 flasks. During this time, the average specific O2 uptake of the cells in the 5 l bioreactor was 8.1 fmol/cell h and, in all cases, the 5 l bioreactors outperformed the equivalent 100 ml spinner-flasks run in parallel with respect to cell yields and growth rates. In addition, yield coefficients, specific growth rates and doubling times were calculated for all systems. Neither the upstream nor downstream bioprocessing unit operations had a discernible effect on cell quality with the harvested cells retaining their immunophenotypic markers, key morphological features and differentiation capacity.


Assuntos
Reatores Biológicos , Células-Tronco Mesenquimais/fisiologia , Microesferas , Contagem de Células , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Humanos , Concentração de Íons de Hidrogênio , Oxigênio/análise , Fatores de Tempo
11.
Biotechnol Lett ; 33(11): 2325-35, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21769648

RESUMO

The effects on human mesenchymal stem cell growth of choosing either of two spinner flask impeller geometries, two microcarrier concentrations and two cell concentrations (seeding densities) were investigated. Cytodex 3 microcarriers were not damaged when held at the minimum speed, N(JS), for their suspension, using either impeller, nor was there any observable damage to the cells. The maximum cell density was achieved after 8-10 days of culture with up to a 20-fold expansion in terms of cells per microcarrier. An increase in microcarrier concentration or seeding density generally had a deleterious or neutral effect, as previously observed for human fibroblast cultures. The choice of impeller was significant, as was incorporation of a 1 day delay before agitation to allow initial attachment of cells. The best conditions for cell expansion on the microcarriers in the flasks were 3,000 microcarriers ml(-1) (ca. 1 g dry weight l(-1)), a seeding density of 5 cells per microcarrier with a 1 day delay before agitation began at N(JS) (30 rpm), using a horizontally suspended flea impeller with an added vertical paddle. These findings were interpreted using Kolmogorov's theory of isotropic turbulence.


Assuntos
Reatores Biológicos , Proliferação de Células , Dextranos , Células-Tronco Mesenquimais/fisiologia , Microesferas , Contagem de Células , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura , Humanos
12.
Biotechnol Lett ; 32(5): 623-33, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20131078

RESUMO

Brewing fermentations have traditionally been undertaken without the use of mechanical agitation, with mixing being provided only by the fluid motion induced by the CO(2) evolved during the batch process. This approach has largely been maintained because of the belief in industry that rotating agitators would damage the yeast. Recent studies have questioned this view. At the bench scale, brewer's yeast is very robust and withstands intense mechanical agitation under aerobic conditions without observable damage as measured by flow cytometry and other parameters. Much less intense mechanical agitation also decreases batch fermentation time for anaerobic beer production by about 25% compared to mixing by CO(2) evolution alone with a small change in the concentration of the different flavour compounds. These changes probably arise for two reasons. Firstly, the agitation increases the relative velocity and the area of contact between the cells and the wort, thereby enhancing the rate of mass transfer to and from the cells. Secondly, the agitation eliminates spatial variations in both yeast concentration and temperature, thus ensuring that the cells are maintained close to the optimum temperature profile during the whole of the fermentation time. These bench scale studies have recently been supported by results at the commercial scale from mixing by an impeller or by a rotary jet head, giving more consistent production without changes in final flavour. It is suggested that this reluctance of the brewing industry to use (adequate) mechanical agitation is another example where the myth of shear damage has had a detrimental effect on the optimal operation of commercial bioprocessing.


Assuntos
Cerveja/microbiologia , Reatores Biológicos/microbiologia , Indústria Alimentícia/métodos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Fermentação , Estresse Mecânico
13.
Biotechnol J ; 15(9): e2000177, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32592336

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapies have proven clinical efficacy for the treatment of hematological malignancies. However, CAR-T cell therapies are prohibitively expensive to manufacture. The authors demonstrate the manufacture of human CAR-T cells from multiple donors in an automated stirred-tank bioreactor. The authors successfully produced functional human CAR-T cells from multiple donors under dynamic conditions in a stirred-tank bioreactor, resulting in overall cell yields which were significantly better than in static T-flask culture. At agitation speeds of 200 rpm and greater (up to 500 rpm), the CAR-T cells are able to proliferate effectively, reaching viable cell densities of >5 × 106 cells ml-1 over 7 days. This is comparable with current expansion systems and significantly better than static expansion platforms (T-flasks and gas-permeable culture bags). Importantly, engineered T-cells post-expansion retained expression of the CAR gene and retained their cytolytic function even when grown at the highest agitation intensity. This proves that power inputs used in this study do not affect cell efficacy to target and kill the leukemia cells. This is the first demonstration of human CAR-T cell manufacture in stirred-tank bioreactors and the findings present significant implications and opportunities for larger-scale allogeneic CAR-T production.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células , Contagem de Células , Humanos , Imunoterapia Adotiva , Linfócitos T
14.
Biotechnol J ; 11(4): 473-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26632496

RESUMO

Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost-effective manufacturing processes. Microcarriers enable the culture of anchorage-dependent cells in stirred-tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow-derived MSC (hBM-MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM-MSC1 underwent more cumulative population doublings over three passages in comparison to hBM-MSC2 and hBM-MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM-MSC expansion. HBM-MSCs were successfully harvested and characterised, demonstrating hBM-MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier-based allogeneic cell therapy manufacture.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Reatores Biológicos , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos
15.
Regen Med ; 10(1): 49-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25562352

RESUMO

Cell-based therapies have the potential to make a large contribution toward currently unmet patient need and thus effective manufacture of these products is essential. Many challenges must be overcome before this can become a reality and a better definition of the manufacturing requirements for cell-based products must be obtained. The aim of this study is to inform industry and academia of current cell-based therapy clinical development and to identify gaps in their manufacturing requirements. A total of 1342 active cell-based therapy clinical trials have been identified and characterized based on cell type, target indication and trial phase. Multiple technologies have been assessed for the manufacture of these cell types in order to facilitate product translation and future process development.


Assuntos
Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Pesquisa Translacional Biomédica/métodos , Ensaios Clínicos como Assunto , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia
16.
Biotechnol J ; 8(4): 459-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23447369

RESUMO

Human mesenchymal stem cell (hMSC) therapies have the potential to revolutionise the healthcare industry and replicate the success of the therapeutic protein industry; however, for this to be achieved there is a need to apply key bioprocessing engineering principles and adopt a quantitative approach for large-scale reproducible hMSC bioprocess development. Here we provide a quantitative analysis of the changes in concentration of glucose, lactate and ammonium with time during hMSC monolayer culture over 4 passages, under 100% and 20% dissolved oxgen (dO2 ), where either a 100%, 50% or 0% growth medium exchange was performed after 72h in culture. Yield coefficients, specific growth rates (h(-1) ) and doubling times (h) were calculated for all cases. The 100% dO2 flasks outperformed the 20% dO2 flasks with respect to cumulative cell number, with the latter consuming more glucose and producing more lactate and ammonium. Furthermore, the 100% and 50% medium exchange conditions resulted in similar cumulative cell numbers, whilst the 0% conditions were significantly lower. Cell immunophenotype and multipotency were not affected by the experimental culture conditions. This study demonstrates the importance of determining optimal culture conditions for hMSC expansion and highlights a potential cost savings from only making a 50% medium exchange, which may prove significant for large-scale bioprocessing.


Assuntos
Biotecnologia/métodos , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Meios de Cultura , Glucose/metabolismo , Humanos , Imunofenotipagem , Cinética , Ácido Láctico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Compostos de Amônio Quaternário/metabolismo
18.
Regen Med ; 7(1): 71-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22168499

RESUMO

Human pluripotent stem cells will likely be a significant part of the regenerative medicine-driven healthcare revolution. In order to realize this potential, culture processes must be standardized, scalable and able to produce clinically relevant cell numbers, whilst maintaining critical biological functionality. This review comprises a broad overview of important bioprocess considerations, referencing the development of biopharmaceutical processes in an effort to learn from current best practice in the field. Particular focus is given to the recent efforts to grow human pluripotent stem cells in microcarrier or aggregate suspension culture, which would allow geometric expansion of productive capacity were it to be fully realized. The potential of these approaches is compared with automation of traditional T-flask culture, which may provide a cost-effective platform for low-dose, low-incidence conditions or autologous therapies. This represents the first step in defining the full extent of the challenges facing bioprocess engineers in the exploitation of large-scale human pluripotent stem cell manufacture.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Medicina Regenerativa/métodos , Diferenciação Celular , Proliferação de Células , Estudos de Viabilidade , Humanos
19.
Biotechnol J ; 6(8): 911-25, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21744501

RESUMO

Scale-up/scale-down techniques are vital for successful and safe commercial-scale bioprocess design and operation. An example is given in this review of recent studies related to beer production. Work at the bench scale shows that brewing yeast is not compromised by mechanical agitation up to 4.5 W/kg; and that compared with fermentations mixed by CO(2) evolution, agitation ≥ 0.04 W/kg is able to reduce fermentation time by about 20%. Work at the commercial scale in cylindroconical fermenters shows that, without mechanical agitation, most of the yeast sediments into the cone for about 50% of the fermentation time, leading to poor temperature control. Stirrer mixing overcomes these problems and leads to a similar reduction in batch time as the bench-scale tests and greatly reduces its variability, but is difficult to install in extant fermenters. The mixing characteristics of a new jet mixer, a rotary jet mixer, which overcomes these difficulties, are reported, based on pilot-scale studies. This change enables the advantages of stirring to be achieved at the commercial scale without the problems. In addition, more of the fermentable sugars are converted into ethanol. This review shows the effectiveness of scale-up/scale-down studies for improving commercial operations. Suggestions for further studies are made: one concerning the impact of homogenization on the removal of vicinal diketones and the other on the location of bubble formation at the commercial scale.


Assuntos
Cerveja/economia , Reatores Biológicos/economia , Fermentação , Microbiologia Industrial/instrumentação , Etanol/química , Hidrodinâmica , Microbiologia Industrial/economia , Saccharomyces cerevisiae/metabolismo , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA