Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(16): 1420-1428, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38743908

RESUMO

Generalized lymphatic anomaly (GLA) and kaposiform lymphangiomatosis (KLA) are rare congenital disorders that arise through anomalous embryogenesis of the lymphatic system. A somatic activating NRAS p.Q61R variant has been recently detected in GLA and KLA tissues, suggesting that the NRAS p.Q61R variant plays an important role in the development of these diseases. To address this role, we studied the effect of the NRAS p.Q61R variant in lymphatic endothelial cells (LECs) on the structure of the lymphatics during embryonic and postnatal lymphangiogenesis applying inducible, LEC-specific NRAS p.Q61R variant in mice. Lox-stop-Lox NrasQ61R mice were crossed with Prox1-CreERT2 mice expressing tamoxifen-inducible Cre recombinase specifically in LECs. Whole-mount immunostaining of embryonic back skin using an antibody against the LEC surface marker VEGFR3 showed considerably greater lymphatic vessel width in LEC-specific NRAS p.Q61R mutant embryos than in littermate controls. These mutant embryos also showed a significant reduction in the number of lymphatic vessel branches. Furthermore, immunofluorescence staining of whole-mount embryonic back skin using an antibody against the LEC-specific nuclear marker Prox1 showed a large increase in the number of LECs in LEC-specific NRAS p.Q61R mutants. In contrast, postnatal induction of the NRAS p.Q61R variant in LECs did not cause abnormal lymphatic vessel morphogenesis. These results suggest that the NRAS p.Q61R variant in LECs plays a role in development of lymphatic anomalies. While this model does not directly reflect the human pathology of GLA and KLA, there are overlapping features, suggesting that further study of this model may help in studying GLA and KLA mechanisms.


Assuntos
Células Endoteliais , Linfangiogênese , Vasos Linfáticos , Animais , Camundongos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Vasos Linfáticos/embriologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Linfangiogênese/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mutação , Morfogênese/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio , Proteínas Supressoras de Tumor
2.
Am J Hum Genet ; 110(7): 1086-1097, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339631

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of motor neurons. Although repeat expansion in C9orf72 is its most common cause, the pathogenesis of ALS isn't fully clear. In this study, we show that repeat expansion in LRP12, a causative variant of oculopharyngodistal myopathy type 1 (OPDM1), is a cause of ALS. We identify CGG repeat expansion in LRP12 in five families and two simplex individuals. These ALS individuals (LRP12-ALS) have 61-100 repeats, which contrasts with most OPDM individuals with repeat expansion in LRP12 (LRP12-OPDM), who have 100-200 repeats. Phosphorylated TDP-43 is present in the cytoplasm of iPS cell-derived motor neurons (iPSMNs) in LRP12-ALS, a finding that reproduces the pathological hallmark of ALS. RNA foci are more prominent in muscle and iPSMNs in LRP12-ALS than in LRP12-OPDM. Muscleblind-like 1 aggregates are observed only in OPDM muscle. In conclusion, CGG repeat expansions in LRP12 cause ALS and OPDM, depending on the length of the repeat. Our findings provide insight into the repeat length-dependent switching of phenotypes.


Assuntos
Esclerose Lateral Amiotrófica , Distrofias Musculares , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Distrofias Musculares/genética , Doenças Neurodegenerativas/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
3.
Cerebellum ; 23(4): 1498-1508, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38324175

RESUMO

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is an autosomal recessive multisystem neurologic disorder caused by biallelic intronic repeats in RFC1. Although the phenotype of CANVAS has been expanding via diagnostic case accumulation, there are scant pedigree analyses to reveal disease penetrance, intergenerational fluctuations in repeat length, or clinical phenomena (including heterozygous carriers). We identified biallelic RFC1 ACAGG expansions of 1000 ~ repeats in three affected siblings having sensorimotor neuronopathy with spinocerebellar atrophy initially presenting with painful muscle cramps and paroxysmal dry cough. They exhibit almost homogeneous clinical and histopathological features, indicating motor neuronopathy. Over 10 years of follow-up, painful intractable muscle cramps ascended from legs to trunks and hands, followed by amyotrophy and subsequent leg pyramidal signs. The disease course combined with the electrophysical and imagery data suggest initial and prolonged hyperexcitability and the ensuing spinal motor neuron loss, which may progress from the lumbar to the rostral anterior horns and later expand to the corticospinal tract. Genetically, heterozygous ACAGG expansions of similar length were transmitted in unaffected family members of three successive generations, and some of them experienced muscle cramps. Leukocyte telomere length assays revealed comparatively shorter telomeres in affected individuals. This comprehensive pedigree analysis demonstrated a non-anticipating ACAGG transmission and high penetrance of manifestations with a biallelic state, especially motor neuronopathy in which muscle cramps serve as a prodromal and disease progress marker. CANVAS and RFC1 spectrum disorder should be considered when diagnosing lower dominant motor neuron disease, idiopathic muscle cramps, or neuromuscular hyperexcitability syndromes.


Assuntos
Cãibra Muscular , Linhagem , Proteína de Replicação C , Humanos , Cãibra Muscular/genética , Masculino , Feminino , Proteína de Replicação C/genética , Adulto , Pessoa de Meia-Idade , Japão , Doença dos Neurônios Motores/genética , Vestibulopatia Bilateral/genética , Ataxias Espinocerebelares/genética , Expansão das Repetições de DNA/genética , População do Leste Asiático
4.
J Hum Genet ; 68(1): 51-54, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36167772

RESUMO

ANO3 encodes Anoctamin-3, also known as TMEM16C, a calcium-activated chloride channel. Heterozygous variants of ANO3 can cause dystonia 24, an adult-onset focal dystonia. Some pediatric cases have been reported, but most patients were intellectually normal with some exceptions. Here, we report a two-year-old girl who showed mild to moderate developmental delay, tremor, and ataxic gait, but no obvious dystonia. Trio exome sequencing identified a heterozygous de novo missense variant NM_031418.4:c.1809T>G, p.(Asn603Lys) in the ANO3 gene. Three cases with ANO3 variants and intellectual disability have been reported, including the present case. These variants were predicted to face in the same direction on the same alpha-helix (the transmembrane 4 domain), suggesting an association between these variants and childhood-onset movement disorder with intellectual disability. In pediatric cases with developmental delay and movement disorders such as tremor and ataxia, specific variants in the transmembrane 4 domain of ANO3 may be a cause, even in the absence of dystonia.


Assuntos
Distonia , Deficiência Intelectual , Pré-Escolar , Feminino , Humanos , Anoctaminas/genética , Canais de Cloreto/genética , Deficiências do Desenvolvimento/genética , Distonia/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Tremor
5.
J Hum Genet ; 68(6): 399-408, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36804482

RESUMO

Cancer treatment is increasingly evolving toward personalized medicine, which sequences numerous cancer-related genes and identifies therapeutic targets. On the other hand, patients with germline pathogenic variants (GPV) have been identified as secondary findings (SF) and oncologists have been urged to handle them. All SF disclosure considerations for patients are addressed and decided at the molecular tumor boards (MTB) in the facility. In this study, we retrospectively summarized the results of all cases in which comprehensive genomic profiling (CGP) test was conducted at our hospital, and discussed the possibility of presumed germline pathogenic variants (PGPV) at MTB. MTB recommended confirmatory testing for 64 patients. Informed consent was obtained from attending physicians for 53 of them, 30 patients requested testing, and 17 patients tested positive for a confirmatory test. Together with already known variants, 4.5 % of the total confirmed in this cohort. Variants verified in this study were BRCA1 (n = 12), BRCA2 (n = 6), MSH2 (n = 2), MSH6 (n = 2), WT1 (n = 2), TP53, MEN1, CHEK2, MLH1, TSC2, PTEN, RB1, and SMARCB1. There was no difference in the tumor's VAF between confirmed positive and negative cases for variants determined as PGPV by MTB. Current results demonstrate the actual number of cases until confirmatory germline test for patients with PGPV from tumor-only CGP test through the discussion at the MTB. The practical results at this single facility will serve as a guide for the management of the selection and distribution of SF in the genome analysis.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias , Humanos , Estudos Retrospectivos , Mutação em Linhagem Germinativa/genética , Neoplasias/diagnóstico , Neoplasias/genética , Genes BRCA2 , Genômica
6.
J Med Genet ; 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534205

RESUMO

BACKGROUND: DNA replisome is a molecular complex that plays indispensable roles in normal DNA replication. IMAGE-I syndrome is a DNA replisome-associated genetic disease caused by biallelic mutations in the gene encoding DNA polymerase epsilon catalytic subunit 1 (POLE). However, the underlying molecular mechanisms remain largely unresolved. METHODS: The clinical manifestations in two patients with IMAGE-I syndrome were characterised. Whole-exome sequencing was performed and altered mRNA splicing and protein levels of POLE were determined. Subcellular localisation, cell cycle analysis and DNA replication stress were assessed using fibroblasts and peripheral blood from the patients and transfected cell lines to determine the functional significance of POLE mutations. RESULTS: Both patients presented with growth retardation, adrenal insufficiency, immunodeficiency and complicated diffuse large B-cell lymphoma. We identified three novel POLE mutations: namely, a deep intronic mutation, c.1226+234G>A, common in both patients, and missense (c.2593T>G) and in-frame deletion (c.711_713del) mutations in each patient. The unique deep intronic mutation produced aberrantly spliced mRNAs. All mutants showed significantly reduced, but not null, protein levels. Notably, the mutants showed severely diminished nuclear localisation, which was rescued by proteasome inhibitor treatment. Functional analysis revealed impairment of cell cycle progression and increase in the expression of phospho-H2A histone family member X in both patients. CONCLUSION: These findings provide new insights regarding the mechanism via which POLE mutants are highly susceptible to proteasome-dependent degradation in the nucleus, resulting in impaired DNA replication and cell cycle progression, a characteristic of DNA replisome-associated diseases.

7.
PLoS Genet ; 16(2): e1008628, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32101538

RESUMO

Skin lesions, cataracts, and congenital anomalies have been frequently associated with inherited deficiencies in enzymes that synthesize cholesterol. Lanosterol synthase (LSS) converts (S)-2,3-epoxysqualene to lanosterol in the cholesterol biosynthesis pathway. Biallelic mutations in LSS have been reported in families with congenital cataracts and, very recently, have been reported in cases of hypotrichosis. However, it remains to be clarified whether these phenotypes are caused by LSS enzymatic deficiencies in each tissue, and disruption of LSS enzymatic activity in vivo has not yet been validated. We identified two patients with novel biallelic LSS mutations who exhibited congenital hypotrichosis and midline anomalies but did not have cataracts. We showed that the blockade of the LSS enzyme reaction occurred in the patients by measuring the (S)-2,3-epoxysqualene/lanosterol ratio in the forehead sebum, which would be a good biomarker for the diagnosis of LSS deficiency. Epidermis-specific Lss knockout mice showed neonatal lethality due to dehydration, indicating that LSS could be involved in skin barrier integrity. Tamoxifen-induced knockout of Lss in the epidermis caused hypotrichosis in adult mice. Lens-specific Lss knockout mice had cataracts. These results confirmed that LSS deficiency causes hypotrichosis and cataracts due to loss-of-function mutations in LSS in each tissue. These mouse models will lead to the elucidation of the pathophysiological mechanisms associated with disrupted LSS and to the development of therapeutic treatments for LSS deficiency.


Assuntos
Catarata/genética , Epiderme/patologia , Hipotricose/genética , Transferases Intramoleculares/genética , Cristalino/patologia , Adolescente , Animais , Catarata/congênito , Catarata/patologia , Colesterol/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Epiderme/enzimologia , Saúde Holística , Humanos , Hipotricose/congênito , Hipotricose/patologia , Transferases Intramoleculares/metabolismo , Lanosterol/análise , Lanosterol/metabolismo , Cristalino/enzimologia , Masculino , Camundongos , Camundongos Knockout , Mutação , Linhagem , Sebo/química , Sequenciamento do Exoma
8.
Hum Mutat ; 43(1): 3-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618388

RESUMO

Costello syndrome (CS) is an autosomal-dominant disorder characterized by distinctive facial features, hypertrophic cardiomyopathy, skeletal abnormalities, intellectual disability, and predisposition to cancers. Germline variants in HRAS have been identified in patients with CS. Intragenic HRAS duplications have been reported in three patients with a milder phenotype of CS. In this study, we identified two known HRAS variants, p.(Glu63_Asp69dup), p.(Glu62_Arg68dup), and one novel HRAS variant, p.(Ile55_Asp57dup), in patients with CS, including a patient with craniosynostosis. These intragenic duplications are located in the G3 domain and the switch II region. Cells expressing cDNA with these three intragenic duplications showed an increase in ELK-1 transactivation. Injection of wild-type or mutant HRAS mRNAs with intragenic duplications in zebrafish embryos showed significant elongation of the yolk at 11 h postfertilization, which was improved by MEK inhibitor treatment, and a variety of developmental abnormalities at 3 days post fertilization was observed. These results indicate that small in-frame duplications affecting the G3 domain and switch II region of HRAS increase the activation of the ERK pathway, resulting in developmental abnormalities in zebrafish or patients with CS.


Assuntos
Anormalidades Múltiplas , Síndrome de Costello , Anormalidades Múltiplas/genética , Animais , Síndrome de Costello/genética , Humanos , Sistema de Sinalização das MAP Quinases , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Peixe-Zebra/genética
9.
Am J Hum Genet ; 104(6): 1233-1240, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130285

RESUMO

Noonan syndrome (NS) is characterized by distinctive craniofacial appearance, short stature, and congenital heart disease. Approximately 80% of individuals with NS harbor mutations in genes whose products are involved in the RAS/mitogen-activating protein kinase (MAPK) pathway. However, the underlying genetic causes in nearly 20% of individuals with NS phenotype remain unexplained. Here, we report four de novo RRAS2 variants in three individuals with NS. RRAS2 is a member of the RAS subfamily and is ubiquitously expressed. Three variants, c.70_78dup (p.Gly24_Gly26dup), c.216A>T (p.Gln72His), and c.215A>T (p.Gln72Leu), have been found in cancers; our functional analyses showed that these three changes induced elevated association of RAF1 and that they activated ERK1/2 and ELK1. Notably, prominent activation of ERK1/2 and ELK1 by p.Gln72Leu associates with the severe phenotype of the individual harboring this change. To examine variant pathogenicity in vivo, we generated zebrafish models. Larvae overexpressing c.70_78dup (p.Gly24_Gly26dup) or c.216A>T (p.Gln72His) variants, but not wild-type RRAS2 RNAs, showed craniofacial defects and macrocephaly. The same dose injection of mRNA encoding c.215A>T (p.Gln72Leu) caused severe developmental impairments and low dose overexpression of this variant induced craniofacial defects. In contrast, the RRAS2 c.224T>G (p.Phe75Cys) change, located on the same allele with p.Gln72His in an individual with NS, resulted in no aberrant in vitro or in vivo phenotypes by itself. Together, our findings suggest that activating RRAS2 mutations can cause NS and expand the involvement of RRAS2 proto-oncogene to rare germline disorders.


Assuntos
Mutação com Ganho de Função , Mutação em Linhagem Germinativa , Proteínas de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Síndrome de Noonan/etiologia , Peixe-Zebra/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Exoma , Feminino , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Conformação Proteica , Proto-Oncogene Mas , Homologia de Sequência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
J Hum Genet ; 67(7): 393-397, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35087201

RESUMO

Paucity of interlobular bile ducts (PILBD) is a heterogeneous disorder classified into two categories, syndromic and non-syndromic bile duct paucity. Syndromic PILBD is characterized by the presence of clinical manifestations of Alagille syndrome. Non-syndromic PILBD is caused by multiple diseases, such as metabolic and genetic disorders, infectious diseases, and inflammatory and immune disorders. We evaluated a family with a dominantly inherited PILBD, who presented with cholestasis at 1-2 months of age but spontaneously improved by 1 year of age. Next-generation sequencing analysis revealed a heterozygous CACYBP/SIP p.E177Q pathogenic variant. Calcyclin-binding protein and Siah1 interacting protein (CACYBP/SIP) form a ubiquitin ligase complex and induce proteasomal degradation of non-phosphorylated ß-catenin. Immunohistochemical analysis revealed a slight decrease in CACYBP and ß-catenin levels in the liver of patients in early infancy, which almost normalized by 13 months of age. The CACYBP/SIP p.E177Q pathogenic variant may form a more active or stable ubiquitin ligase complex that enhances the degradation of ß-catenin and delays the maturation of intrahepatic bile ducts. Our findings indicate that accurate regulation of the ß-catenin concentration is essential for the development of intrahepatic bile ducts and CACYBP/SIP pathogenic variant is a novel cause of PILDB.


Assuntos
Síndrome de Alagille , Proteínas de Ligação ao Cálcio , beta Catenina , Ductos Biliares Intra-Hepáticos/metabolismo , Proteínas de Ligação ao Cálcio/genética , Humanos , Lactente , Recém-Nascido , Ubiquitina-Proteína Ligases , beta Catenina/metabolismo
11.
Gastroenterology ; 158(6): 1626-1641.e8, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31930989

RESUMO

BACKGROUND & AIMS: Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca2+-selective ion channel, in an international cohort of patients and in mice. METHODS: We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP. We validated our findings by sequencing DNA from 300 patients with CP (not associated with alcohol consumption) and 1070 persons from the general population in Japan (control individuals). In replication studies, we sequenced DNA from patients with early-onset CP (20 years or younger) not associated with alcohol consumption from France (n = 470) and Germany (n = 410). We expressed TRPV6 variants in HEK293 cells and measured their activity using Ca2+ imaging assays. CP was induced by repeated injections of cerulein in TRPV6mut/mut mice. RESULTS: We identified the variants c.629C>T (p.A210V) and c.970G>A (p.D324N) in TRPV6 in the index patient. Variants that affected function of the TRPV6 product were found in 13 of 300 patients (4.3%) and 1 of 1070 control individuals (0.1%) from Japan (odds ratio [OR], 48.4; 95% confidence interval [CI], 6.3-371.7; P = 2.4 × 10-8). Twelve of 124 patients (9.7%) with early-onset CP had such variants. In the replication set from Europe, 18 patients with CP (2.0%) carried variants that affected the function of the TRPV6 product compared with 0 control individuals (P = 6.2 × 10-8). Variants that did not affect the function of the TRPV6 product (p.I223T and p.D324N) were overrepresented in Japanese patients vs control individuals (OR, 10.9; 95% CI, 4.5-25.9; P = 7.4 × 10-9 for p.I223T and P = .01 for p.D324N), whereas the p.L299Q was overrepresented in European patients vs control individuals (OR, 3.0; 95% CI, 1.9-4.8; P = 1.2 × 10-5). TRPV6mut/mut mice given cerulein developed more severe pancreatitis than control mice, as shown by increased levels of pancreatic enzymes, histologic alterations, and pancreatic fibrosis. CONCLUSIONS: We found that patients with early-onset CP not associated with alcohol consumption carry variants in TRPV6 that affect the function of its product, perhaps by altering Ca2+ balance in pancreatic cells. TRPV6 regulates Ca2+ homeostasis and pancreatic inflammation.


Assuntos
Idade de Início , Canais de Cálcio/genética , Pancreatite Crônica/genética , Canais de Cátion TRPV/genética , Adolescente , Adulto , Idoso , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Criança , Pré-Escolar , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Mutação INDEL , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Pâncreas/patologia , Pancreatite Crônica/patologia , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPV/metabolismo , Sequenciamento do Exoma , Adulto Jovem
12.
J Hum Genet ; 66(10): 965-972, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33744911

RESUMO

Heat shock protein family B member 8, encoded by HSPB8, is an essential component of the chaperone-assisted selective autophagy complex, which maintains muscle function by degrading damaged proteins in the cells. Mutations in HSPB8 have been reported to cause Charcot-Marie-Tooth type 2L, distal hereditary motor neuropathy IIa, and rimmed vacuolar myopathies (RVM). In this study, we identified a novel heterozygous frameshift variant c.525_529del in HSPB8 in a large Japanese family with RVM, using whole exome sequencing. Three affected individuals had severe respiratory failure, which has not been addressed by previous studies. Muscle atrophy in the paraspinal muscles was also a clinical feature of the individuals affected with RVM in this study. The frameshift mutation was located in the last coding exon, and the mutated protein was predicted to harbor an isoleucine-leucine-valine (ILV) sequence, which corresponds to the IXI/V (isoleucine, X amino acids, and isoleucine or valine) motif. The IXI/V motif is essential for assembly into larger oligomers in other small heat shock proteins and all frameshift mutants of HSPB8 were predicted to share the ILV sequence in the C-terminal extension. The in silico prediction tools showed low protein solubility and increased aggregation propensity for the region around the ILV sequence. The IXI/V motif might be associated with the pathogenesis of HSPB8-related RVM.


Assuntos
Miopatias Distais/genética , Predisposição Genética para Doença , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Atrofia Muscular/genética , Adulto , Miopatias Distais/diagnóstico , Miopatias Distais/patologia , Feminino , Deleção de Genes , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular/diagnóstico , Atrofia Muscular/patologia , Músculos Paraespinais/patologia , Sequenciamento do Exoma
13.
Int Immunol ; 32(4): 283-292, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31954058

RESUMO

Nephrotic syndrome (NS) is a renal disease characterized by severe proteinuria and hypoproteinemia. Although several single-gene mutations have been associated with steroid-resistant NS, causative genes for steroid-sensitive NS (SSNS) have not been clarified. While seeking to identify causative genes associated with SSNS by whole-exome sequencing, we found compound heterozygous variants/mutations (c.524T>C; p.I175T and c.662G>A; p.R221H) of the interleukin-1 receptor accessory protein (IL1RAP) gene in two siblings with SSNS. The siblings' parents are healthy, and each parent carries a different heterozygous IL1RAP variant/mutation. Since IL1RAP is a critical subunit of the functional interleukin-1 receptor (IL-1R), we investigated the effect of these variants on IL-1R subunit function. When stimulated with IL-1ß, peripheral blood mononuclear cells from the siblings with SSNS produced markedly lower levels of cytokines compared with cells from healthy family members. Moreover, IL-1R with a variant IL1RAP subunit, reconstituted on a hematopoietic cell line, had impaired binding ability and low reactivity to IL-1ß. Thus, the amino acid substitutions in IL1RAP found in these NS patients are dysfunctional variants/mutations. Furthermore, in the kidney of Il1rap-/- mice, the number of myeloid-derived suppressor cells, which require IL-1ß for their differentiation, was markedly reduced although these mice did not show significantly increased proteinuria in acute nephrotic injury with lipopolysaccharide treatment. Together, these results identify two IL1RAP variants/mutations in humans for the first time and suggest that IL1RAP might be a causative gene for familial NS.


Assuntos
Proteína Acessória do Receptor de Interleucina-1/genética , Síndrome Nefrótica/genética , Esteroides/efeitos adversos , Animais , Pré-Escolar , Feminino , Variação Genética , Humanos , Recém-Nascido , Proteína Acessória do Receptor de Interleucina-1/sangue , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Síndrome Nefrótica/induzido quimicamente , Síndrome Nefrótica/tratamento farmacológico , Irmãos , Esteroides/uso terapêutico
14.
Hum Mutat ; 41(9): 1540-1554, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32400077

RESUMO

Dysferlinopathy is a group of autosomal recessive muscular dystrophies caused by variants in the dysferlin gene (DYSF), with variable proximal and distal muscle involvement. We performed DYSF gene analyses of 200 cases suspected of having dysferlinopathy (Cohort 1), and identified diagnostic variants in 129/200 cases, including 19 novel variants. To achieve a comprehensive genetic profile of dysferlinopathy, we analyzed the variant data from 209 affected cases from unrelated 209 families, including 80 previously diagnosed and 129 newly diagnosed cases (Cohort 2). Among the 90 types of variants identified in 209 cases, the NM_003494.3: c.2997G>T; p.Trp999Cys, was the most frequent (96/420; 22.9%), followed by c.1566C>G; p.Tyr522* (45/420; 10.7%) on an allele base. p.Trp999Cys was found in 70/209 cases (33.5%), including 20/104 cases (19.2%) with the Miyoshi muscular phenotype and 43/82 cases (52.4%) with the limb-girdle phenotype. In the analysis of missense variants, p.Trp992Arg, p.Trp999Arg, p.Trp999Cys, p.Ser1000Phe, p.Arg1040Trp, and p.Arg1046His were located in the inner DysF domain, representing in 113/160 missense variants (70.6%). This large cohort highlighted the frequent missense variants located in the inner DysF domain as a hotspot for missense variants among our cohort of 209 cases (>95%, Japanese) and hinted at their potential as targets for future therapeutic strategies.


Assuntos
Disferlina/genética , Estudos de Associação Genética , Perfil Genético , Distrofia Muscular do Cíngulo dos Membros/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Adulto Jovem
16.
J Hum Genet ; 65(11): 995-1001, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32591603

RESUMO

Gorham-Stout disease (GSD), a rare disorder of unknown etiology, is characterized by massive osteolysis that is associated with proliferation and dilation of lymphatic vessels. Variants in cancer-associated genes have been described in complex lymphatic anomalies. To explore the pathogenesis of GSD, we performed the amplicon-based deep sequencing on 50 cancer-related genes to assay affected tissues from the six patients with GSD. In one patient, a somatic activating KRAS c.182A > G variant (p.Q61R) was detected in 1% of the tissue sample. Conversely, the mutant allele was not detected in uninvolved normal skin and blood samples. Histopathology of the patient's tissue sample showed proliferation of abnormal lymphatic and blood vascular endothelial cells, osteoclasts, and activated macrophages. The activating KRAS variant is a known 'hotspot' variant, frequently identified in several types of human cancer. This is the first report of identifying a pathogenic variant in a patient with GSD. This finding may set the stage for elucidation of pathophysiology and the development of novel therapies for GSD.


Assuntos
Predisposição Genética para Doença , Proteínas de Neoplasias/genética , Osteólise Essencial/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adolescente , Adulto , Proliferação de Células/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Osteólise Essencial/patologia , Adulto Jovem
17.
Ann Neurol ; 85(6): 927-933, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30945334

RESUMO

c-Jun-amino-terminal kinase-interacting protein 3 (JIP3), encoded by MAPK8IP3, is an adaptor protein of the kinesin-1 complex and essential for axonal transport in neurons. However, an association between MAPK8IP3 variants and human disease has not been established. We identified 5 individuals from four families with recurrent de novo variants c.1732C>T (p.Arg578Cys) and c.3436C>T (p.Arg1146Cys) in MAPK8IP3. The core phenotype includes spastic diplegia, intellectual disability, cerebral atrophy, and corpus callosum hypoplasia. Zebrafish embryos overexpressing human mutant JIP3 showed axon varicosities of the posterior lateral line nerve, suggesting an adverse effect on the developing axons. Our results suggest that MAPK8IP3 variants cause a neurodevelopmental disease. ANN NEUROL 2019;85:927-933.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Variação Genética/genética , Proteínas do Tecido Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/genética , Fenótipo , Adolescente , Adulto , Animais , Pré-Escolar , Feminino , Humanos , Masculino , Peixe-Zebra
18.
Hum Mol Genet ; 26(23): 4715-4727, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973166

RESUMO

Germline mutations in BRAF are a major cause of cardio-facio-cutaneous (CFC) syndrome, which is characterized by heart defects, characteristic craniofacial dysmorphology and dermatologic abnormalities. Patients with CFC syndrome also commonly show gastrointestinal dysfunction, including feeding and swallowing difficulties and gastroesophageal reflux. We have previously found that knock-in mice expressing a Braf Q241R mutation exhibit CFC syndrome-related phenotypes, such as growth retardation, craniofacial dysmorphisms, congenital heart defects and learning deficits. However, it remains unclear whether BrafQ241R/+ mice exhibit gastrointestinal dysfunction. Here, we report that BrafQ241R/+ mice have neonatal feeding difficulties and esophageal dilation. The esophagus tissues from BrafQ241R/+ mice displayed incomplete replacement of smooth muscle with skeletal muscle and decreased contraction. Furthermore, the BrafQ241R/+ mice showed hyperkeratosis and a thickened muscle layer in the forestomach. Treatment with MEK inhibitors ameliorated the growth retardation, esophageal dilation, hyperkeratosis and thickened muscle layer in the forestomach in BrafQ241R/+ mice. The esophageal dilation with aberrant skeletal-smooth muscle boundary in BrafQ241R/+ mice were recovered after treatment with the histone H3K27 demethylase inhibitor GSK-J4. Our results provide clues to elucidate the pathogenesis and possible treatment of gastrointestinal dysfunction and failure to thrive in patients with CFC syndrome.


Assuntos
Displasia Ectodérmica/enzimologia , Estenose Esofágica/enzimologia , Insuficiência de Crescimento/enzimologia , Hiperplasia Epitelial Focal/enzimologia , Cardiopatias Congênitas/enzimologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Gastropatias/enzimologia , Animais , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Estenose Esofágica/genética , Estenose Esofágica/patologia , Fácies , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/patologia , Feminino , Hiperplasia Epitelial Focal/genética , Mutação em Linhagem Germinativa , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Gastropatias/genética
19.
Hum Genet ; 138(1): 21-35, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30368668

RESUMO

RASopathies are a group of developmental disorders caused by mutations in genes that regulate the RAS/MAPK pathway and include Noonan syndrome (NS), Costello syndrome, cardiofaciocutaneous syndrome and other related disorders. Whole exome sequencing studies recently identified LZTR1, PPP1CB and MRAS as new causative genes in RASopathies. However, information on the phenotypes of LZTR1 mutation-positive patients and functional properties of the mutations are limited. To identify variants of LZTR1, PPP1CB, and MRAS, we performed a targeted next-generation sequencing and reexamined previously analyzed exome data in 166 patients with suspected RASopathies. We identified eight LZTR1 variants, including a de novo variant, in seven probands who were suspicious for NS and one known de novo PPP1CB variant in a patient with NS. One of the seven probands had two compound heterozygous LZTR1 variants, suggesting autosomal recessive inheritance. All probands with LZTR1 variants had cardiac defects, including hypertrophic cardiomyopathy and atrial septal defect. Five of the seven probands had short stature or intellectual disabilities. Immunoprecipitation of endogenous LZTR1 followed by western blotting showed that LZTR1 bound to the RAF1-PPP1CB complex. Cells transfected with a small interfering RNA against LZTR1 exhibited decreased levels of RAF1 phosphorylated at Ser259. These are the first results to demonstrate LZTR1 in association with the RAF1-PPP1CB complex as a component of the RAS/MAPK pathway.


Assuntos
Biomarcadores/análise , Mutação , Síndrome de Noonan/genética , Proteína Fosfatase 1/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fatores de Transcrição/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Exoma , Feminino , Seguimentos , Humanos , Masculino , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Fenótipo , Prognóstico , Ligação Proteica , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-raf/genética , Fatores de Transcrição/genética , Adulto Jovem
20.
Genet Med ; 21(6): 1286-1294, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30451973

RESUMO

PURPOSE: Galactosemia is caused by metabolic disturbances at various stages of galactose metabolism, including deficiencies in enzymes involved in the Leloir pathway (GALT, GALK1, and GALE). Nevertheless, the etiology of galactosemia has not been identified in a subset of patients. This study aimed to explore the causes of unexplained galactosemia. METHODS: Trio-based exome sequencing and/or Sanger sequencing was performed in eight patients with unexplained congenital galactosemia. In vitro enzymatic assays and immunoblot assays were performed to confirm the pathogenicity of the variants. RESULTS: The highest blood galactose levels observed in each patient were 17.3-41.9 mg/dl. Bilateral cataracts were observed in two patients. In all eight patients, we identified biallelic variants (p.Arg82*, p.Ile99Leufs*46, p.Gly142Arg, p.Arg267Gly, and p.Trp311*) in the GALM encoding galactose mutarotase, which catalyzes epimerization between ß- and α-D-galactose in the first step of the Leloir pathway. GALM enzyme activities were undetectable in lymphoblastoid cell lines established from two patients. Immunoblot analysis showed the absence of the GALM protein in the patients' peripheral blood mononuclear cells. In vitro GALM expression and protein stability assays revealed altered stabilities of the variant GALM proteins. CONCLUSION: Biallelic GALM pathogenic variants cause galactosemia, suggesting the existence of type IV galactosemia.


Assuntos
Carboidratos Epimerases/genética , Galactosemias/etiologia , Galactosemias/genética , Alelos , Sequência de Bases , Carboidratos Epimerases/metabolismo , Pré-Escolar , Feminino , Galactose/metabolismo , Variação Genética , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA