Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nucleic Acids Res ; 50(10): 5739-5756, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639764

RESUMO

The spread of drug-resistant bacteria represents one of the most significant medical problems of our time. Bacterial fitness loss associated with drug resistance can be counteracted by acquisition of secondary mutations, thereby enhancing the virulence of such bacteria. Antibiotic rifampicin (Rif) targets cellular RNA polymerase (RNAP). It is potent broad spectrum drug used for treatment of bacterial infections. We have investigated the compensatory mechanism of the secondary mutations alleviating Rif resistance (Rifr) on biochemical, structural and fitness indices. We find that substitutions in RNAP genes compensating for the growth defect caused by ßQ513P and ßT563P Rifr mutations significantly enhanced bacterial relative growth rate. By assaying RNAP purified from these strains, we show that compensatory mutations directly stimulated basal transcriptional machinery (2-9-fold) significantly improving promoter clearance step of the transcription pathway as well as elongation rate. Molecular modeling suggests that compensatory mutations affect transcript retention, substrate loading, and nucleotidyl transfer catalysis. Strikingly, one of the identified compensatory substitutions represents mutation conferring rifampicin resistance on its own. This finding reveals an evolutionary process that creates more virulent species by simultaneously improving the fitness and augmenting bacterial drug resistance.


Assuntos
Escherichia coli , Rifampina , Antibacterianos/farmacologia , Catálise , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Mutação , Rifampina/farmacologia
2.
Nucleic Acids Res ; 45(19): 11327-11340, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29036608

RESUMO

S531 of Escherichia coli RNA polymerase (RNAP) ß subunit is a part of RNA binding domain in transcription complex. While highly conserved, S531 is not involved in interactions within the transcription complex as suggested by X-ray analysis. To understand the basis for S531 conservation we performed systematic mutagenesis of this residue. We find that the most of the mutations significantly decreased initiation-to-elongation transition by RNAP. Surprisingly, some changes enhanced the production of full-size transcripts by suppressing abortive loss of short RNAs. S531-R increased transcript retention by establishing a salt bridge with RNA, thereby explaining the R substitution at the equivalent position in extremophilic organisms, in which short RNAs retention is likely to be an issue. Generally, the substitutions had the same effect on bacterial doubling time when measured at 20°. Raising growth temperature to 37° ablated the positive influence of some mutations on the growth rate in contrast to their in vitro action, reflecting secondary effects of cellular environment on transcription and complex involvement of 531 locus in the cell biology. The properties of generated RNAP variants revealed an RNA/protein interaction network that is crucial for transcription, thereby explaining the details of initiation-to-elongation transition on atomic level.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Resistência Microbiana a Medicamentos/genética , Proteínas de Escherichia coli/genética , Mutação , Rifampina/farmacologia , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Antibióticos Antituberculose/farmacologia , Biocatálise , Divisão Celular/genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Modelos Moleculares , Ligação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura , Transcrição Gênica
3.
Biochem Biophys Res Commun ; 495(1): 110-115, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097207

RESUMO

Bacterial RNA polymerase (RNAP) is an RNA-synthesizing molecular machine and a target for antibiotics. In transcription, RNAP can interact with DNA sequence-specifically, during promoter recognition by the σ-containing holoenzyme, or nonspecifically, during productive RNA elongation by the core RNAP. We describe high-affinity single-stranded DNA aptamers that are specifically recognized by the core RNAP from Thermus aquaticus. The aptamers interact with distinct epitopes inside the RNAP main channel, including the rifamycin pocket, and sense the binding of other RNAP ligands such as rifamycin and the σA subunit. The aptamers inhibit RNAP activity and can thus be used for functional studies of transcription and development of novel RNAP inhibitors.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Thermus/enzimologia , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Domínio Catalítico , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Inibidores Enzimáticos/química , Ligantes , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Thermus thermophilus/enzimologia
4.
Nucleic Acids Res ; 42(1): 544-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24089145

RESUMO

The trigger loop (TL) in the RNA polymerase (RNAP) active center plays key roles in the reactions of nucleotide addition and RNA cleavage catalyzed by RNAP. The adjacent F loop (FL) was proposed to contribute to RNAP catalysis by modulating structural changes in the TL. Here, we investigate the interplay between these two elements during transcription by bacterial RNAP. Thermodynamic analysis of catalysis by RNAP variants with mutations in the TL and FL suggests that the TL is the key element required for temperature activation in RNAP catalysis, and that the FL promotes TL transitions during nucleotide addition. We reveal characteristic differences in the catalytic parameters between thermophilic Thermus aquaticus and mesophilic Deinococcus radiodurans RNAPs and identify the FL as an adaptable element responsible for the observed differеnces. Mutations in the FL also significantly affect the rate of intrinsic RNA cleavage in a TL-dependent manner. In contrast, much weaker effects of the FL and TL mutations on GreA-assisted RNA cleavage suggest that the FL-dependent TL transitions are not required for this reaction. Thus, functional interplay between the FL and TL is essential for various catalytic activities of RNAP and plays an adaptive role in catalysis by thermophilic and mesophilic enzymes.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Biocatálise , Domínio Catalítico , RNA Polimerases Dirigidas por DNA/genética , Deinococcus/enzimologia , Mutação , Nucleotídeos/metabolismo , Clivagem do RNA , Temperatura , Thermus/enzimologia , Transcrição Gênica/efeitos dos fármacos
5.
J Biol Chem ; 288(9): 6688-703, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23283976

RESUMO

Precise transcription by cellular RNA polymerase requires the efficient removal of noncognate nucleotide residues that are occasionally incorporated. Mis-incorporation causes the transcription elongation complex to backtrack, releasing a single strand 3'-RNA segment bearing a noncognate residue, which is hydrolyzed by the active center that carries two Mg(2+) ions. However, in most x-ray structures only one Mg(2+) is present. This Mg(2+) is tightly bound to the active center aspartates, creating an inactive stable state. The first residue of the single strand RNA segment in the backtracked transcription elongation complex strongly promotes transcript hydrolytic cleavage by establishing a network of interactions that force a shift of stably bound Mg(2+) to release some of its aspartate coordination valences for binding to the second Mg(2+) thus enabling catalysis. Such a rearrangement that we call active center tuning (ACT) occurs when all recognition contacts of the active center-bound RNA segment are established and verified by tolerance to stress. Transcription factor Gre builds on the ACT mechanism in the same reaction by increasing the retention of the second Mg(2+) and by activating the attacking water, causing 3000-4000-fold reaction acceleration and strongly reinforcing proofreading. The unified mechanism for RNA synthesis and degradation by RNA polymerase predicts that ACT also executes NTP selection thereby contributing to high transcription fidelity.


Assuntos
Proteínas de Bactérias/química , RNA Polimerases Dirigidas por DNA/química , Endonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Thermus/enzimologia , Catálise , Domínio Catalítico , Magnésio/química , RNA/biossíntese , RNA/química , Transcrição Gênica/fisiologia
6.
Antimicrob Agents Chemother ; 58(3): 1420-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24342645

RESUMO

Multisubunit RNA polymerase, an enzyme that accomplishes transcription in all living organisms, is a potent target for antibiotics. The antibiotic streptolydigin inhibits RNA polymerase by sequestering the active center in a catalytically inactive conformation. Here, we show that binding of streptolydigin to RNA polymerase strictly depends on a noncatalytic magnesium ion which is likely chelated by the aspartate of the bridge helix of the active center. Substitutions of this aspartate may explain different sensitivities of bacterial RNA polymerases to streptolydigin. These results provide the first evidence for the role of noncatalytic magnesium ions in the functioning of RNA polymerase and suggest new routes for the modification of existing and the design of new inhibitors of transcription.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Magnésio/metabolismo , Domínio Catalítico , Taq Polimerase/efeitos dos fármacos , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/metabolismo
7.
Bioconjug Chem ; 24(3): 443-7, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23425196

RESUMO

Rifampicin (Rif) is powerful broad spectrum antibiotic that targets bacterial RNA polymerase (RNAP) by blocking the transcript exit channel. The performance of the drug can be further enhanced by tagging with active chemical groups that produce collateral damage. We explored this principle by tethering Rif to Fe(2+)-EDTA chelate. Modified drug retained high binding affinity to RNAP and caused localized cleavage of the enzyme and promoter DNA. Analysis of the degradation products revealed the cleavage of RNAP ß subunit at the sites involved in the drug binding, while DNA was selectively seized in the vicinity of the transcription start site. The synthesized Rif derivative exemplifies "aggressive" types of drugs that can be especially useful for TB treatment by attacking the nongrowing dormant form of the mycobacterium, which is hardly susceptible to "passive" drugs.


Assuntos
Antibióticos Antituberculose/química , Antibióticos Antituberculose/metabolismo , Rifampina/química , Rifampina/metabolismo , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Dados de Sequência Molecular
8.
Proc Natl Acad Sci U S A ; 106(45): 18942-7, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19855007

RESUMO

Bacterial RNA polymerases (RNAPs) undergo coordinated conformational changes during catalysis. In particular, concerted folding of the trigger loop and rearrangements of the bridge helix at the RNAP active center have been implicated in nucleotide addition and RNAP translocation. At moderate temperatures, the rate of catalysis by RNAP from thermophilic Thermus aquaticus is dramatically reduced compared with its closest mesophilic relative, Deinococcus radiodurans. Here, we show that a part of this difference is conferred by a third element, the F loop, which is adjacent to the N terminus of the bridge helix and directly contacts the folded trigger loop. Substitutions of amino acid residues in the F loop and in an adjacent segment of the bridge helix in T. aquaticus RNAP for their D. radiodurans counterparts significantly increased the rate of catalysis (up to 40-fold at 20 degrees C). A deletion in the F loop dramatically impaired the rate of nucleotide addition and pyrophosphorolysis, but it had only a moderate effect on intrinsic RNA cleavage. Streptolydigin, an antibiotic that blocks folding of the trigger loop, did not inhibit nucleotide addition by the mutant enzyme. The resistance to streptolydigin likely results from the loss of its functional target, the folding of the trigger loop, which is already impaired by the F-loop deletion. Our results demonstrate that the F loop is essential for proper folding of the trigger loop during nucleotide addition and governs the temperature adaptivity of RNAPs in different bacteria.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Deinococcus/enzimologia , Modelos Moleculares , Dobramento de Proteína/efeitos dos fármacos , Temperatura , Thermus/enzimologia , Regulação Alostérica/fisiologia , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Catálise , RNA Polimerases Dirigidas por DNA/genética , Resistência a Medicamentos , Mutação/genética , Estrutura Terciária de Proteína/efeitos dos fármacos , Especificidade da Espécie
9.
Nucleic Acids Res ; 33(13): 4202-11, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16049026

RESUMO

Three conserved aspartate residues in the largest subunit of multisubunit RNA polymerases (RNAPs) coordinate two Mg2+ ions involved in the catalysis of phosphodiester bond synthesis. A structural model based on the stereochemistry of nucleotidyl transfer reaction as well as recent crystallographic data predict that these Mg2+ ions should also be involved in the reverse reaction of pyrophosphorolysis as well as in the endo- and exonucleolytic cleavage of the nascent RNA. Here, we check these predictions by constructing point substitutions of each of the three Asp residues in the beta' subunit of Escherichia coli RNAP and testing the mutant enzymes' functions. Using artificially assembled elongation complexes, we demonstrate that substitutions of any of the three aspartates dramatically reduce all known RNAP catalytic activities, supporting the model's predictions that same amino acids participate in all RNAP catalytic reactions. We demonstrate that though substitutions in the DFDGD motif decrease Mg2+ binding to free RNAP below detection limits, the apparent affinity to Mg2+ in transcription complexes formed by the mutant and wild-type RNAPs is similar, suggesting that NTP substrates and/or nucleic acids actively contribute to the retention of active center Mg2+.


Assuntos
Ácido Aspártico/química , RNA Polimerases Dirigidas por DNA/química , Substituição de Aminoácidos , Ácido Aspártico/genética , Sequência de Bases , Catálise , Domínio Catalítico , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transcrição Gênica
10.
J Mol Biol ; 353(1): 138-54, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16154587

RESUMO

The large beta and beta' subunits of the bacterial core RNA polymerase (RNAP) are highly conserved throughout evolution. Nevertheless, large sequence insertions in beta and beta' characterize specific evolutionary lineages of bacteria. The Thermus aquaticus RNAP beta' subunit contains a 283 residue insert between conserved regions A and B that is found in only four bacterial species. The Escherichia coli RNAP beta' subunit contains a 188 residue insert in the middle of conserved region G that is found in a wide range of bacterial species. Here, we present structural studies of these two beta' insertions. We show that the inserts comprise repeats of a previously characterized fold, the sandwich-barrel hybrid motif (as predicted from previous sequence analysis) and that the inserts serve significant roles in facilitating protein/protein and/or protein/nucleic acid interactions.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
11.
Res Microbiol ; 156(10): 994-1004, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16084067

RESUMO

Transposons closely related to mercury resistance transposons Tn5041, Tn5053, and Tn5056, which have been previously described in present-day bacteria, were detected in a survey of 12 mercury-resistant Pseudomonas strains isolated from permafrost samples aged 15-40 thousand years. In addition, Tn5042, a novel type of mercury resistance transposon, was revealed in the permafrost strain collection and its variants found to be common among present-day bacteria. The results reveal that no drastic changes in the distribution mode of the different types of mercury resistance transposons among environmental bacteria have taken place in the last 15-40 thousand years.


Assuntos
Elementos de DNA Transponíveis , Farmacorresistência Bacteriana/genética , Sedimentos Geológicos/microbiologia , Gelo , Mercúrio/farmacologia , Pseudomonas/efeitos dos fármacos , Proteínas de Bactérias/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Dados de Sequência Molecular , Óperon , Paleontologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas fluorescens/efeitos dos fármacos , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas putida/efeitos dos fármacos , Pseudomonas putida/genética , Pseudomonas putida/isolamento & purificação
12.
FEMS Microbiol Lett ; 211(1): 91-5, 2002 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-12052556

RESUMO

The 640-bp minimal replication region derived from a plasmid DNA preparation from an Acidothiobacillus ferrooxidans strain capable of autonomous replication in a range of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter calcoaceticus and Alcaligenes faecalis) was identified. This DNA fragment (named TFK replicon) does not encode Rep proteins and appears to be unrelated to other known replicons.


Assuntos
Proteínas de Bactérias/genética , Replicação do DNA/genética , DNA Bacteriano/genética , Bactérias Gram-Negativas/genética , Plasmídeos/genética , Sequência de Bases , Vetores Genéticos/genética , Dados de Sequência Molecular , Replicon/genética
13.
Transcription ; 1(2): 89-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21326898

RESUMO

Folding of the trigger loop of RNA polymerase promotes nucleotide addition through creating a closed, catalytically competent conformation of the active center. Here, we discuss the impact of adjacent RNA polymerase elements, including the F loop and the jaw domain, as well as external regulatory factors on the trigger loop folding and catalysis.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Dobramento de Proteína , Transcrição Gênica , Sequência de Aminoácidos , Biocatálise , RNA Polimerases Dirigidas por DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Temperatura
15.
Mol Cell ; 23(1): 97-107, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16798040

RESUMO

During transcription initiation by bacterial RNA polymerase, the sigma subunit recognizes the -35 and -10 promoter elements; free sigma, however, does not bind DNA. We selected ssDNA aptamers that strongly and specifically bound free sigma(A) from Thermus aquaticus. A consensus sequence, GTA(C/T)AATGGGA, was required for aptamer binding to sigma(A), with the TA(C/T)AAT segment making interactions similar to those made by the -10 promoter element (consensus sequence TATAAT) in the context of RNA polymerase holoenzyme. When in dsDNA form, the aptamers function as strong promoters for the T. aquaticus RNA polymerase sigma(A) holoenzyme. Recognition of the aptamer-based promoters depends on the downstream GGGA motif from the aptamers' common sequence, which is contacted by sigma(A) region 1.2 and directs transcription initiation even in the absence of the -35 promoter element. Thus, recognition of bacterial promoters is controlled by independent interactions of sigma with multiple basal promoter elements.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Holoenzimas/metabolismo , Regiões Promotoras Genéticas , Fator sigma/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Holoenzimas/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Fator sigma/metabolismo , Thermus/enzimologia
16.
Mol Cell ; 19(5): 655-66, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16167380

RESUMO

Streptolydigin (Stl) is a potent inhibitor of bacterial RNA polymerases (RNAPs). The 2.4 A resolution structure of the Thermus thermophilus RNAP-Stl complex showed that, in full agreement with the available genetic data, the inhibitor binding site is located 20 A away from the RNAP active site and encompasses the bridge helix and the trigger loop, two elements that are considered to be crucial for RNAP catalytic center function. Structure-based biochemical experiments revealed additional determinants of Stl binding and demonstrated that Stl does not affect NTP substrate binding, DNA translocation, and phosphodiester bond formation. The RNAP-Stl complex structure, its comparison with the closely related substrate bound eukaryotic transcription elongation complexes, and biochemical analysis suggest an inhibitory mechanism in which Stl stabilizes catalytically inactive (preinsertion) substrate bound transcription intermediate, thereby blocking structural isomerization of RNAP to an active configuration. The results provide a basis for a design of new antibiotics utilizing the Stl-like mechanism.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Aminoglicosídeos/química , Antibacterianos/química , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/biossíntese , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/enzimologia
17.
Mol Cell ; 10(3): 623-34, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12408829

RESUMO

Each elementary step of transcription involves translocation of the 3' terminus of RNA in the RNA polymerase active center, followed by the entry of a nucleoside triphosphate. The structural basis of these transitions was studied using RNA-protein crosslinks. The contacts were mapped and projected onto the crystal structure, in which the "F bridge" helix in the beta' subunit is either bent or relaxed. Bending/relaxation of the F bridge correlates with lateral movements of the RNA 3' terminus. The bent conformation is sterically incompatable with the occupancy of the nucleotide site, suggesting that the switch regulates both the entry of substrates and the translocation of the transcript. The switch occurs as part of a cooperative transition of a larger structural domain that consists of the F helix and the supporting G loop.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Nucleotídeos/metabolismo , Estrutura Terciária de Proteína , Transcrição Gênica , Sítios de Ligação , Reagentes de Ligações Cruzadas/metabolismo , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , Substâncias Macromoleculares , Modelos Moleculares , Estrutura Molecular , Mutação Puntual , Ligação Proteica , Subunidades Proteicas , Sítio de Iniciação de Transcrição
18.
EMBO J ; 22(9): 2234-44, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12727889

RESUMO

In DNA-dependent RNA polymerases, reactions of RNA synthesis and degradation are performed by the same active center (in contrast to DNA polymerases in which they are separate). We propose a unified catalytic mechanism for multisubunit RNA polymerases based on the analysis of its 3'-5' exonuclease reaction in the context of crystal structure. The active center involves a symmetrical pair of Mg(2+) ions that switch roles in synthesis and degradation. One ion is retained permanently and the other is recruited ad hoc for each act of catalysis. The weakly bound Mg(2+) is stabilized in the active center in different modes depending on the type of reaction: during synthesis by the beta,gamma-phosphates of the incoming substrate; and during hydrolysis by the phosphates of a non-base-paired nucleoside triphosphate. The latter mode defines a transient, non-specific nucleoside triphosphate-binding site adjacent to the active center, which may serve as a gateway for polymerization of substrates.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA/biossíntese , Sítios de Ligação , Catálise , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Pirofosfatases/farmacologia , RNA/metabolismo
19.
Proc Natl Acad Sci U S A ; 100(26): 15469-74, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14668436

RESUMO

During transcription elongation, RNA polymerase (RNAP) occasionally loses its grip on the growing RNA end and backtracks on the DNA template. Prokaryotic Gre factors rescue the backtracked ternary elongating complex through stimulation of an intrinsic endonuclease activity, which removes the disengaged 3' RNA segment. By using RNA-protein crosslinking in defined ternary elongating complexes, site-directed mutagenesis, discriminative biochemical assays, and docking of the two protein structures, we show that Gre acts by providing two carboxylate residues for coordination of catalytic Mg2+ ion in the RNAP active center. A similar mechanism is suggested for the functionally analogous eukaryotic SII factor. The results expand the general two-metal model of RNAP catalytic mechanism whereby one of the Mg2+ ions is permanently retained, whereas the other is recruited ad hoc by an auxiliary factor.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , RNA Polimerases Dirigidas por DNA/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Elongação da Transcrição
20.
Eur J Biochem ; 271(23-24): 4921-31, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15606780

RESUMO

Bacterial RNA polymerase (RNAP) is the central enzyme of gene expression that is responsible for the synthesis of all types of cellular RNAs. The process of transcription is accompanied by complex structural rearrangements of RNAP. Despite the recent progress in structural studies of RNAP, detailed mechanisms of conformational changes of RNAP that occur at different stages of transcription remain unknown. The goal of this work was to obtain novel ligands to RNAP which would target different epitopes of the enzyme and serve as specific probes to study the mechanism of transcription and conformational flexibility of RNAP. Using in vitro selection methods, we obtained 13 classes of ssDNA aptamers against Escherichia coli core RNAP. The minimal nucleic acid scaffold (an oligonucleotide construct imitating DNA and RNA in elongation complex), rifampicin and the sigma70-subunit inhibited binding of the aptamers to RNAP core but did not affect the dissociation rate of preformed RNAP-aptamer complexes. We argue that these ligands sterically block access of the aptamers to their binding sites within the main RNAP channel. In contrast, transcript cleavage factor GreB increased the rate of dissociation of preformed RNAP-aptamer complexes. This suggested that GreB that binds RNAP outside the main channel actively disrupts RNAP-aptamer complexes by inducing conformational changes in the channel. We propose that the aptamers obtained in this work will be useful for studying the interactions of RNAP with various ligands and regulatory factors and for investigating the conformational flexibility of the enzyme.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Rifampina/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , DNA Bacteriano , RNA Polimerases Dirigidas por DNA/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Fatores de Elongação da Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA