Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(30): e2221958120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459546

RESUMO

Osteoarthritis is a chronic disease that can be initiated by altered joint loading or injury of the cartilage. The mechanically sensitive PIEZO ion channels have been shown to transduce injurious levels of biomechanical strain in articular chondrocytes and mediate cell death. However, the mechanisms of channel gating in response to high cellular deformation and the strain thresholds for activating PIEZO channels remain unclear. We coupled studies of single-cell compression using atomic force microscopy (AFM) with finite element modeling (FEM) to identify the biophysical mechanisms of PIEZO-mediated calcium (Ca2+) signaling in chondrocytes. We showed that PIEZO1 and PIEZO2 are needed for initiating Ca2+ signaling at moderately high levels of cellular deformation, but at the highest strains, PIEZO1 functions independently of PIEZO2. Biophysical factors that increase apparent chondrocyte membrane tension, including hypoosmotic prestrain, high compression magnitudes, and low deformation rates, also increased PIEZO1-driven Ca2+ signaling. Combined AFM/FEM studies showed that 50% of chondrocytes exhibit Ca2+ signaling at 80 to 85% nominal cell compression, corresponding to a threshold of apparent membrane finite principal strain of E = 1.31, which represents a membrane stretch ratio (λ) of 1.9. Both intracellular and extracellular Ca2+ are necessary for the PIEZO1-mediated Ca2+ signaling response to compression. Our results suggest that PIEZO1-induced signaling drives chondrocyte mechanical injury due to high membrane tension, and this threshold can be altered by factors that influence membrane prestress, such as cartilage hypoosmolarity, secondary to proteoglycan loss. These findings suggest that modulating PIEZO1 activation or downstream signaling may offer avenues for the prevention or treatment of osteoarthritis.


Assuntos
Condrócitos , Osteoartrite , Humanos , Condrócitos/metabolismo , Canais Iônicos/metabolismo , Articulações , Osteoartrite/metabolismo , Mecanotransdução Celular , Sinalização do Cálcio
2.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33758095

RESUMO

Osteoarthritis (OA) is a painful and debilitating condition of synovial joints without any disease-modifying therapies [A. M. Valdes, T. D. Spector, Nat. Rev. Rheumatol. 7, 23-32 (2011)]. We previously identified mechanosensitive PIEZO channels, PIEZO1 and PIEZO2, both expressed in articular cartilage, to function in chondrocyte mechanotransduction in response to injury [W. Lee et al., Proc. Natl. Acad. Sci. U.S.A. 111, E5114-E5122 (2014); W. Lee, F. Guilak, W. Liedtke, Curr. Top. Membr. 79, 263-273 (2017)]. We therefore asked whether interleukin-1-mediated inflammatory signaling, as occurs in OA, influences Piezo gene expression and channel function, thus indicative of maladaptive reprogramming that can be rationally targeted. Primary porcine chondrocyte culture and human osteoarthritic cartilage tissue were studied. We found that interleukin-1α (IL-1α) up-regulated Piezo1 in porcine chondrocytes. Piezo1 expression was significantly increased in human osteoarthritic cartilage. Increased Piezo1 expression in chondrocytes resulted in a feed-forward pathomechanism whereby increased function of Piezo1 induced excess intracellular Ca2+ at baseline and in response to mechanical deformation. Elevated resting state Ca2+ in turn rarefied the F-actin cytoskeleton and amplified mechanically induced deformation microtrauma. As intracellular substrates of this OA-related inflammatory pathomechanism, in porcine articular chondrocytes exposed to IL-1α, we discovered that enhanced Piezo1 expression depended on p38 MAP-kinase and transcription factors HNF4 and ATF2/CREBP1. CREBP1 directly bound to the proximal PIEZO1 gene promoter. Taken together, these signaling and genetic reprogramming events represent a detrimental Ca2+-driven feed-forward mechanism that can be rationally targeted to stem the progression of OA.


Assuntos
Condrócitos/metabolismo , Interleucina-1alfa/metabolismo , Canais Iônicos/genética , Mecanotransdução Celular/imunologia , Osteoartrite/imunologia , Fator 2 Ativador da Transcrição/metabolismo , Animais , Cálcio/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/imunologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Canais Iônicos/metabolismo , Mecanotransdução Celular/genética , Osteoartrite/genética , Osteoartrite/patologia , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Sus scrofa , Regulação para Cima/imunologia
3.
Connect Tissue Res ; 63(1): 69-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33494617

RESUMO

INTRODUCTION: Chondrocytes perceive and respond to mechanical loading as signals that regulate their metabolism. Joint loading exposes chondrocytes to multiple modes of mechanical stress, including hydrostatic pressure; however, the mechanisms by which chondrocytes sense physiologically relevant levels of hydrostatic pressure are not well understood. We hypothesized that hydrostatic pressure is transduced to an intracellular signal through mechanosensitive membrane ion channels of chondrocytes. The goals of this study were to examine the effect of hydrostatic loading on the development of engineered cartilage tissue and the contribution of mechanosensitive ion channels on these hydrostatic loading effects. METHODS: Using a 3D model of porcine chondrocytes in agarose, we applied specific chemical inhibitors to determine the role of transient receptor potential (TRP) ion channels TRPV1, TRPV4, TRPC3, and TRPC1 in transducing hydrostatic pressure. RESULTS: Hydrostatic loading caused a frequency and magnitude-dependent decrease in sulfated glycosaminoglycans (S-GAG), without changes in DNA content. Inhibiting TRPC3 and TRPV4 decreased S-GAG content; however, only the inhibition of TRPV1 partially attenuated the hydrostatic loading-induced reduction in S-GAG content. CONCLUSIONS: Our findings indicate that TRPV1 may serve as a transducer of hydrostatic pressure in chondrocytes, and provide further support for the role of TRPV4 in regulating chondrocyte anabolism, as well as initial evidence implicating TRPC3 in chondrogenesis. These findings add to our further understanding of the chondrocyte "channelome" and suggest that a range of ion channels mediate the transduction of different biophysical stimuli such as hydrostatic pressure, membrane stretch, or osmotic stress.


Assuntos
Cartilagem Articular , Canais de Potencial de Receptor Transitório , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Condrogênese , Glicosaminoglicanos/metabolismo , Pressão Hidrostática , Suínos , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
4.
J Biomech Eng ; 143(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210125

RESUMO

The osmotic pressure in articular cartilage serves an important mechanical function in healthy tissue. Its magnitude is thought to play a role in advancing osteoarthritis. The aims of this study were to: (1) isolate and quantify the magnitude of cartilage swelling pressure in situ; and (2) identify the effect of salt concentration on material parameters. Confined compression stress-relaxation testing was performed on 18 immature bovine and six mature human cartilage samples in solutions of varying osmolarities. Direct measurements of osmotic pressure revealed nonideal and concentration-dependent osmotic behavior, with magnitudes approximately 1/3 those predicted by ideal Donnan law. A modified Donnan constitutive behavior was able to capture the aggregate behavior of all samples with a single adjustable parameter. Results of curve-fitting transient stress-relaxation data with triphasic theory in febio demonstrated concentration-dependent material properties. The aggregate modulus HA increased threefold as the external concentration decreased from hypertonic 2 M to hypotonic 0.001 M NaCl (bovine: HA=0.420±0.109 MPa to 1.266±0.438 MPa; human: HA=0.499±0.208 MPa to 1.597±0.455 MPa), within a triphasic theory inclusive of osmotic effects. This study provides a novel and simple analytical model for cartilage osmotic pressure which may be used in computational simulations, validated with direct in situ measurements. A key finding is the simultaneous existence of Donnan osmotic and Poisson-Boltzmann electrostatic interactions within cartilage.


Assuntos
Cartilagem Articular
5.
J Biomech Eng ; 142(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536113

RESUMO

Trans-synovial solute transport plays a critical role in the clearance of intra-articularly (IA) delivered drugs. In this study, we present a computational finite element model (FEM) of solute transport through the synovium validated by experiments on synovial explants. Unsteady diffusion of urea, a small uncharged molecule, was measured through devitalized porcine and human synovium using custom-built diffusion chambers. A multiphasic computational model was constructed and optimized with the experimental data to extract effective diffusivity for urea within the synovium. A monotonic decrease in urea concentration was observed in the donor bath over time, with an effective diffusivity found to be an order of magnitude lower in synovium versus that measured in free solution. Parametric studies incorporating an intimal cell layer with varying thickness and varying effective diffusivities were performed, revealing a dependence of drug clearance kinetics on both parameters. The findings of this study indicate that the synovial matrix impedes urea solute transport out of the joint with little retention of the solute in the matrix.


Assuntos
Análise de Elementos Finitos , Membrana Sinovial , Animais , Transporte Biológico , Cartilagem Articular , Difusão , Modelos Biológicos , Suínos
6.
Biophys J ; 104(8): 1794-804, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23601326

RESUMO

It was recently demonstrated that mechanical shearing of synovial fluid (SF), induced during joint motion, rapidly activates latent transforming growth factor ß (TGF-ß). This discovery raised the possibility of a physiological process consisting of latent TGF-ß supply to SF, activation via shearing, and transport of TGF-ß into the cartilage matrix. Therefore, the two primary objectives of this investigation were to characterize the secretion rate of latent TGF-ß into SF, and the transport of active TGF-ß across the articular surface and into the cartilage layer. Experiments on tissue explants demonstrate that high levels of latent TGF-ß1 are secreted from both the synovium and all three articular cartilage zones (superficial, middle, and deep), suggesting that these tissues are capable of continuously replenishing latent TGF-ß to SF. Furthermore, upon exposure of cartilage to active TGF-ß1, the peptide accumulates in the superficial zone (SZ) due to the presence of an overwhelming concentration of nonspecific TGF-ß binding sites in the extracellular matrix. Although this response leads to high levels of active TGF-ß in the SZ, the active peptide is unable to penetrate deeper into the middle and deep zones of cartilage. These results provide strong evidence for a sequential physiologic mechanism through which SZ chondrocytes gain access to active TGF-ß: the synovium and articular cartilage secrete latent TGF-ß into the SF and, upon activation, TGF-ß transports back into the cartilage layer, binding exclusively to the SZ.


Assuntos
Cartilagem Articular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Sítios de Ligação , Bovinos , Condrócitos/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Técnicas In Vitro , Líquido Sinovial/metabolismo
7.
Curr Opin Biotechnol ; 73: 374-379, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34735987

RESUMO

'Mechanogenetics,' a new field at the convergence of mechanobiology and synthetic biology, presents an innovative strategy to treat, repair, or restore diseased cells and tissues by harnessing mechanical signal transduction pathways to control gene expression. While the role of mechanical forces in regulating development, homeostasis, and disease is well established, only recently have we identified the specific mechanosensors and downstream signaling pathways involved in these processes. Simultaneously, synthetic biological systems are developing increasingly sophisticated approaches of controlling mammalian cellular responses. Continued mechanistic refinement and identification of how cellular mechanosensors respond to homeostatic and pathological mechanical forces, combined with synthetic tools to integrate and respond to these inputs, promises to extend the development of new therapeutic approaches for treating disease.


Assuntos
Engenharia Celular , Mecanotransdução Celular , Animais , Biofísica , Mamíferos , Transdução de Sinais/genética , Biologia Sintética
8.
Acta Biomater ; 133: 74-86, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823324

RESUMO

Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.


Assuntos
Artrite Reumatoide , Osteoartrite , Artrite Reumatoide/terapia , Materiais Biocompatíveis , Humanos , Imunomodulação , Imunoterapia , Osteoartrite/terapia
9.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33571125

RESUMO

Mechanobiologic signals regulate cellular responses under physiologic and pathologic conditions. Using synthetic biology and tissue engineering, we developed a mechanically responsive bioartificial tissue that responds to mechanical loading to produce a preprogrammed therapeutic biologic drug. By deconstructing the signaling networks induced by activation of the mechanically sensitive ion channel transient receptor potential vanilloid 4 (TRPV4), we created synthetic TRPV4-responsive genetic circuits in chondrocytes. We engineered these cells into living tissues that respond to mechanical loading by producing the anti-inflammatory biologic drug interleukin-1 receptor antagonist. Chondrocyte TRPV4 is activated by osmotic loading and not by direct cellular deformation, suggesting that tissue loading is transduced into an osmotic signal that activates TRPV4. Either osmotic or mechanical loading of tissues transduced with TRPV4-responsive circuits protected constructs from inflammatory degradation by interleukin-1α. This synthetic mechanobiology approach was used to develop a mechanogenetic system to enable long-term, autonomously regulated drug delivery driven by physiologically relevant loading.


Assuntos
Produtos Biológicos , Canais de Cátion TRPV , Produtos Biológicos/metabolismo , Condrócitos/metabolismo , Redes Reguladoras de Genes , Canais de Cátion TRPV/metabolismo , Engenharia Tecidual
10.
J Biomech ; 107: 109852, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32517855

RESUMO

This study investigated wear damage of immature bovine articular cartilage using reciprocal sliding of tibial cartilage strips against glass or cartilage. Experiments were conducted in physiological buffered saline (PBS) or mature bovine synovial fluid (SF). A total of 63 samples were tested, of which 47 exhibited wear damage due to delamination of the cartilage surface initiated in the middle zone, with no evidence of abrasive wear. There was no difference between the friction coefficient of damaged and undamaged samples, showing that delamination wear occurs even when friction remains low under a migrating contact area configuration. No difference was observed in the onset of damage or in the friction coefficient between samples tested in PBS or SF. The onset of damage occurred earlier when testing cartilage against glass versus cartilage against cartilage, supporting the hypothesis that delamination occurs due to fatigue failure of the collagen in the middle zone, since stiffer glass produces higher strains and tensile stresses under comparable loads. The findings of this study are novel because they establish that delamination of the articular surface, starting in the middle zone, may represent a primary mechanism of failure. Based on preliminary data, it is reasonable to hypothesize that delamination wear via subsurface fatigue failure is similarly the primary mechanism of human cartilage wear under normal loading conditions, albeit requiring far more cycles of loading than in immature bovine cartilage.


Assuntos
Cartilagem Articular , Animais , Bovinos , Fricção , Humanos , Estresse Mecânico , Líquido Sinovial , Tíbia
11.
J Orthop Res ; 37(6): 1287-1293, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30977548

RESUMO

Stem cells provide tremendous promise for the development of new therapeutic approaches for musculoskeletal conditions. In addition to their multipotency, certain types of stem cells exhibit immunomodulatory effects that can mitigate inflammation and enhance tissue repair. However, the translation of stem cell therapies to clinical practice has proven difficult due to challenges in intradonor and interdonor variability, engraftment, variability in recipient microenvironment and patient indications, and limited therapeutic biological activity. In this regard, the success of stem cell-based therapies may benefit from cellular engineering approaches to enhance factors such as purification, homing and cell survival, trophic effects, or immunomodulatory signaling. By combining recent advances in gene editing, synthetic biology, and tissue engineering, the potential exists to create new classes of "designer" cells that have prescribed cell-surface molecules and receptors as well as synthetic gene circuits that provide for autoregulated drug delivery or enhanced tissue repair. Published by Wiley Periodicals, Inc. J Orthop Res 37:1287-1293, 2019.


Assuntos
Engenharia Genética/métodos , Transplante de Células-Tronco/métodos , Animais , Epigênese Genética , Edição de Genes , Humanos , Ortopedia , Engenharia Tecidual
12.
Matrix Biol ; 71-72: 40-50, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29800616

RESUMO

Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease.


Assuntos
Cartilagem Articular/metabolismo , Matriz Extracelular/patologia , Osteoartrite/patologia , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Epigênese Genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo
13.
J Elast ; 129(1-2): 69-105, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38523894

RESUMO

This article illustrates our approach for modeling the solid matrix of biological tissues using reactive constrained mixtures. Several examples are presented to highlight the potential benefits of this approach, showing that seemingly disparate fields of mechanics and chemical kinetics are actually closely interrelated and may be elegantly expressed in a unified framework. Thus, constrained mixture models recover classical theories for fibrous materials with bundles oriented in different directions or having different reference configurations, that produce characteristic fiber recruitment patterns under loading. Reactions that exchange mass among various constituents of a mixture may be used to describe tissue growth and remodeling, which may also alter the material's anisotropy. Similarly, reactions that describe the breaking and reforming of bonds may be used to model free energy dissipation in a viscoelastic material. Therefore, this framework is particularly well suited for modeling biological tissues.

14.
Tissue Eng Part A ; 23(15-16): 847-858, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28193145

RESUMO

When cultured with sufficient nutrient supply, engineered cartilage synthesizes proteoglycans rapidly, producing an osmotic swelling pressure that destabilizes immature collagen and prevents the development of a robust collagen framework, a hallmark of native cartilage. We hypothesized that mechanically constraining the proteoglycan-induced tissue swelling would enhance construct functional properties through the development of a more stable collagen framework. To test this hypothesis, we developed a novel "cage" growth system to mechanically prevent tissue constructs from swelling while ensuring adequate nutrient supply to the growing construct. The effectiveness of constrained culture was examined by testing constructs embedded within two different scaffolds: agarose and cartilage-derived matrix hydrogel (CDMH). Constructs were seeded with immature bovine chondrocytes and cultured under free swelling (FS) conditions for 14 days with transforming growth factor-ß before being placed into a constraining cage for the remainder of culture. Controls were cultured under FS conditions throughout. Agarose constructs cultured in cages did not expand after the day 14 caging while FS constructs expanded to 8 × their day 0 weight after 112 days of culture. In addition to the physical differences in growth, by day 56, caged constructs had higher equilibrium (agarose: 639 ± 179 kPa and CDMH: 608 ± 257 kPa) and dynamic compressive moduli (agarose: 3.4 ± 1.0 MPa and CDMH 2.8 ± 1.0 MPa) than FS constructs (agarose: 193 ± 74 kPa and 1.1 ± 0.5 MPa and CDMH: 317 ± 93 kPa and 1.8 ± 1.0 MPa for equilibrium and dynamic properties, respectively). Interestingly, when normalized to final day wet weight, cage and FS constructs did not exhibit differences in proteoglycan or collagen content. However, caged culture enhanced collagen maturation through the increased formation of pyridinoline crosslinks and improved collagen matrix stability as measured by α-chymotrypsin solubility. These findings demonstrate that physically constrained culture of engineered cartilage constructs improves functional properties through improved collagen network maturity and stability. We anticipate that constrained culture may benefit other reported engineered cartilage systems that exhibit a mismatch in proteoglycan and collagen synthesis.


Assuntos
Cartilagem Articular/fisiologia , Colágeno/metabolismo , Engenharia Tecidual/métodos , Animais , Cartilagem Articular/efeitos dos fármacos , Bovinos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Módulo de Elasticidade , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/metabolismo , Sefarose , Sus scrofa , Alicerces Teciduais/química
15.
Interface Focus ; 6(1): 20150063, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26855751

RESUMO

This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

16.
J Biomech ; 49(10): 2089-2094, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27255605

RESUMO

Cartilage tissue engineering is a promising approach to treat osteoarthritis. However, current techniques produce tissues too small for clinical relevance. Increasingly close-packed channels have helped overcome nutrient transport limitations in centimeter-sized chondrocyte-agarose constructs, yet optimal channel spacings to recapitulate native cartilage compositional and mechanical properties in constructs this large have not been identified. Transient active TGF-ß treatment consistently reproduces native compressive Young׳s modulus (EY) and glycosaminoglycan (GAG) content in constructs, but standard dosages of 10ng/mL exacerbate matrix heterogeneity. To ultimately produce articular layer-sized constructs, we must first optimize channel spacing and investigate the role of TGF-ß in the utility of channels. We cultured ∅10mm constructs with 0, 12, 19, or 27 nutrient channels (∅1mm) for 6-8 weeks with 0, 1, or 10ng/mL TGF-ß; subsequently we analyzed them mechanically, biochemically, and histologically. Constructs with 12 or 19 channels grew the most favorably, reaching EY=344±113kPa and GAG and collagen contents of 10.8±1.2% and 2.2±0.2% of construct wet weight, respectively. Constructs with 27 channels had significantly less deposited GAG than other groups. Channeled constructs given 1 or 10ng/mL TGF-ß developed similar properties. Without TGF-ß, constructs with 0 or 12 channels exhibited properties that were indistinguishable, and lower than TGF-ß-supplemented constructs. Taken together, these results emphasize that nutrient channels are effective only in the presence of TGF-ß, and indicate that spacings equivalent to 12 channels in ∅10mm constructs can be employed in articular-layer-sized constructs with reduced dosages of TGF-ß.


Assuntos
Cartilagem/efeitos dos fármacos , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta/farmacologia , Animais , Cartilagem/metabolismo , Cartilagem/fisiologia , Bovinos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Colágeno/metabolismo , Módulo de Elasticidade , Glicosaminoglicanos/metabolismo
17.
Tissue Eng Part A ; 22(17-18): 1063-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27481330

RESUMO

Symptomatic osteoarthritic lesions span large regions of joint surfaces and the ability to engineer cartilage constructs at clinically relevant sizes would be highly desirable. We previously demonstrated that nutrient transport limitations can be mitigated by the introduction of channels in 10 mm diameter cartilage constructs. In this study, we scaled up our previous system to cast and cultivate 40 mm diameter constructs (2.3 mm overall thickness); 4 mm diameter and channeled 10 mm diameter constructs were studied for comparison. Furthermore, to assess whether prior results using primary bovine cells are applicable for passaged cells-a more clinically realistic scenario-we cast constructs of each size with primary or twice-passaged cells. Constructs were assessed mechanically for equilibrium compressive Young's modulus (EY), dynamic modulus at 0.01 Hz (G*), and friction coefficient (µ); they were also assessed biochemically, histologically, and immunohistochemically for glycosaminoglycan (GAG) and collagen contents. By maintaining open channels, we successfully cultured robust constructs the size of entire human articular cartilage layers (growing to ∼52 mm in diameter, 4 mm thick, mass of 8 g by day 56), representing a 100-fold increase in scale over our 4 mm diameter constructs, without compromising their functional properties. Large constructs reached EY of up to 623 kPa and GAG contents up to 8.9%/ww (% of wet weight), both within native cartilage ranges, had G* >2 MPa, and up to 3.5%/ww collagen. Constructs also exhibited some of the lowest µ reported for engineered cartilage (0.06-0.11). Passaged cells produced tissue of lower quality, but still exhibited native EY and GAG content, similar to their smaller controls. The constructs produced in this study are, to our knowledge, the largest engineered cartilage constructs to date which possess native EY and GAG, and are a testament to the effectiveness of nutrient channels in overcoming transport limitations in cartilage tissue engineering.


Assuntos
Cartilagem/química , Condrócitos/metabolismo , Teste de Materiais , Engenharia Tecidual , Animais , Bovinos , Módulo de Elasticidade , Propriedades de Superfície
18.
Biomaterials ; 77: 173-185, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26599624

RESUMO

Transforming growth factor beta (TGF-ß) has become one of the most widely utilized mediators of engineered cartilage growth. It is typically exogenously supplemented in the culture medium in its active form, with the expectation that it will readily transport into tissue constructs through passive diffusion and influence cellular biosynthesis uniformly. The results of this investigation advance three novel concepts regarding the role of TGF-ß in cartilage tissue engineering that have important implications for tissue development. First, through the experimental and computational analysis of TGF-ß concentration distributions, we demonstrate that, contrary to conventional expectations, media-supplemented exogenous active TGF-ß exhibits a pronounced concentration gradient in tissue constructs, resulting from a combination of high-affinity binding interactions and a high cellular internalization rate. These gradients are sustained throughout the entire culture duration, leading to highly heterogeneous tissue growth; biochemical and histological measurements support that while biochemical content is enhanced up to 4-fold at the construct periphery, enhancements are entirely absent beyond 1 mm from the construct surface. Second, construct-encapsulated chondrocytes continuously secrete large amounts of endogenous TGF-ß in its latent form, a portion of which undergoes cell-mediated activation and enhances biosynthesis uniformly throughout the tissue. Finally, motivated by these prior insights, we demonstrate that the alternative supplementation of additional exogenous latent TGF-ß enhances biosynthesis uniformly throughout tissue constructs, leading to enhanced but homogeneous tissue growth. This novel demonstration suggests that latent TGF-ß supplementation may be utilized as an important tool for the translational engineering of large cartilage constructs that will be required to repair the large osteoarthritic defects observed clinically.


Assuntos
Cartilagem/citologia , Condrócitos/efeitos dos fármacos , Organoides/citologia , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta3/farmacologia , Animais , Comunicação Autócrina , Bovinos , Técnicas de Cultura de Células/instrumentação , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Simulação por Computador , Meios de Cultura/farmacologia , Relação Dose-Resposta a Droga , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Concentração Osmolar , Proteínas Recombinantes/farmacologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia
19.
J Biomech ; 49(9): 1909-1917, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27198889

RESUMO

Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-ß treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-ß treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes.


Assuntos
Cartilagem/fisiologia , Condrócitos/citologia , Engenharia Tecidual/métodos , Adolescente , Adulto , Cartilagem/química , Contagem de Células , Células Cultivadas , Condrócitos/efeitos dos fármacos , Colágeno/análise , Técnicas de Cultura , Módulo de Elasticidade , Feminino , Glicosaminoglicanos/análise , Humanos , Masculino , Pressão , Sefarose , Fator de Crescimento Transformador beta/farmacologia , Adulto Jovem
20.
Tissue Eng Part C Methods ; 21(7): 747-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25526931

RESUMO

Cartilage tissue engineering is a promising approach to resurfacing osteoarthritic joints. Existing techniques successfully engineer small-sized constructs with native levels of extracellular matrix (glycosaminoglycans [GAG] or collagen). However, a remaining challenge is the growth of large-sized constructs with properties similar to those of small constructs, due to consumption and transport limitations resulting in inadequate nutrient availability within the interior of large constructs. This study employed system-specific computational models for estimating glucose requirements of large constructs, with or without channels, to enhance nutrient availability. Based on glucose requirements for matrix synthesis in cartilage constructs, computational simulations were performed to identify the media volume (MV) and the number of nutrient channels (CH) needed to maintain adequate glucose levels within tissue constructs over the 3-day period between media replenishments. In Study 1, the influence of MV (5, 10, 15 mL/construct) and number of nutrient channels (CH: 0, 3, 7, 12 per construct) on glucose availability was investigated computationally for ∅10 × 2.34 mm cylindrical constructs. Results showed that the conventionally used MV 5 led to deleterious glucose depletion after only 40 h of culture, and that MV 15 was required to maintain sufficient glucose levels for all channel configurations. Study 2 examined experimentally the validity of these predictions, for tissue constructs cultured for 56 days. Matrix elaboration was highest in MV 15/CH 12 constructs (21.6% ± 2.4%/ww GAG, 5.5% ± 0.7%/ww collagen, normalized to wet weight (ww) on day 0), leading to the greatest amount of swelling (3.0 ± 0.3 times day-0 volume), in contrast to the significantly lower matrix elaboration of conventional culture, MV 5/CH 0 (11.8% ± 1.6%/ww GAG and 2.5% ± 0.6%/ww collagen, 1.6 ± 0.1 times day-0 volume). The computational analyses correctly predicted the need to increase the conventional media levels threefold to support matrix synthesis in large channeled engineered constructs. Results also suggested that more elaborate computational models are needed for accurate predictive tissue engineering simulations, which account for a broader set of nutrients, cell proliferation, matrix synthesis, and swelling of the constructs.


Assuntos
Cartilagem , Matriz Extracelular , Engenharia Tecidual , Cartilagem/metabolismo , Meios de Cultura , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA