Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Cancer ; 5(1): 66-84, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151625

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer, caused by persistent errors in chromosome segregation during mitosis. Aggressive cancers like high-grade serous ovarian cancer (HGSOC) and triple-negative breast cancer (TNBC) have a high frequency of CIN and TP53 mutations. Here, we show that inhibitors of the KIF18A motor protein activate the mitotic checkpoint and selectively kill chromosomally unstable cancer cells. Sensitivity to KIF18A inhibition is enriched in TP53-mutant HGSOC and TNBC cell lines with CIN features, including in a subset of CCNE1-amplified, CDK4-CDK6-inhibitor-resistant and BRCA1-altered cell line models. Our KIF18A inhibitors have minimal detrimental effects on human bone marrow cells in culture, distinct from other anti-mitotic agents. In mice, inhibition of KIF18A leads to robust anti-cancer effects with tumor regression observed in human HGSOC and TNBC models at well-tolerated doses. Collectively, our results provide a rational therapeutic strategy for selective targeting of CIN cancers via KIF18A inhibition.


Assuntos
Cinesinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Cinesinas/genética , Cinesinas/metabolismo , Mitose/genética , Linhagem Celular , Pontos de Checagem da Fase M do Ciclo Celular
2.
J Med Chem ; 65(6): 4972-4990, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35286090

RESUMO

Chromosomal instability (CIN) is a hallmark of cancer that results from errors in chromosome segregation during mitosis. Targeting of CIN-associated vulnerabilities is an emerging therapeutic strategy in drug development. KIF18A, a mitotic kinesin, has been shown to play a role in maintaining bipolar spindle integrity and promotes viability of CIN cancer cells. To explore the potential of KIF18A, a series of inhibitors was identified. Optimization of an initial hit led to the discovery of analogues that could be used as chemical probes to interrogate the role of KIF18A inhibition. Compounds 23 and 24 caused significant mitotic arrest in vivo, which was sustained for 24 h. This would be followed by cell death either in mitosis or in the subsequent interphase. Furthermore, photoaffinity labeling experiments reveal that this series of inhibitors binds at the interface of KIF18A and tubulin. This study represents the first disclosure of KIF18A inhibitors with in vivo activity.


Assuntos
Cinesinas , Neoplasias , Morte Celular , Humanos , Mitose , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
3.
Mol Cancer Ther ; 17(12): 2575-2585, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266802

RESUMO

Aurora kinase A and B have essential and non-overlapping roles in mitosis, with elevated expression in a subset of human cancers, including acute myeloid leukemia (AML). In this study, pan-aurora kinase inhibitor (AKI) AMG 900 distinguishes itself as an anti-leukemic agent that is more uniformly potent against a panel of AML cell lines than are isoform-selective AKIs and classic AML drugs. AMG 900 inhibited AML cell growth by inducing polyploidization and/or apoptosis. AMG 900 and aurora-B-selective inhibitor AZD1152-hQPA showed comparable cellular effects on AML lines that do not harbor a FLT3-ITD mutation. AMG 900 was active against P-glycoprotein-expressing AML cells resistant to AZD1152-hQPA and was effective at inducing expression of megakaryocyte-lineage markers (CD41, CD42) on human CHRF-288-11 cells and mouse Jak2 V617F cells. In MOLM-13 cells, inhibition of p-histone H3 by AMG 900 was associated with polyploidy, extra centrosomes, accumulation of p53 protein, apoptosis, and cleavage of Bcl-2 protein. Co-administration of cytarabine (Ara-C) with AMG 900 potentiated cell killing in a subset of AML lines, with evidence of attenuated polyploidization. AMG 900 inhibited the proliferation of primary human bone marrow cells in culture, with a better proliferation recovery profile relative to classic antimitotic drug docetaxel. In vivo, AMG 900 significantly reduced tumor burden in a systemic MOLM-13 xenograft model where we demonstrate the utility of 3'-deoxy-3'-18F-fluorothymidine [18F]FLT positron emission tomographic (PET)-CT imaging to measure the antiproliferative effects of AMG 900 in skeletal tissues in mice.


Assuntos
Aurora Quinases/antagonistas & inibidores , Leucemia Mieloide Aguda/patologia , Mitose/efeitos dos fármacos , Ftalazinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Aurora Quinases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Fase G1/efeitos dos fármacos , Humanos , Megacariócitos/efeitos dos fármacos , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Organofosfatos/farmacologia , Poliploidia , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Quinazolinas/farmacologia , Carga Tumoral , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA