RESUMO
Bawri or Garri, a non-descript cattle population managed under an extensive system in Madhya Pradesh state of India, was identified and characterized both genetically and phenotypically to check whether or not it can be recognised as a breed. The cattle have white and gray colour and are medium sized with 122.5 ± 7.5 cm and 109.45 ± 0.39 cm height at withers in male and female, respectively. Double-digest restriction site associated DNA (ddRAD) sequencing was employed to identify ascertainment bias free SNPs representing the entire genome cost effectively; resulting in calling 1,156,650 high quality SNPs. Observed homozygosity was 0.76, indicating Bawri as a quite unique population. However, the inbreeding coefficient was 0.025, indicating lack of selection. SNPs found here can be used in GWAS and genetic evaluation programs. Considering the uniqueness of Bawri cattle, it can be registered as a breed for its better genetic management.
Assuntos
Genoma , Endogamia , Bovinos/genética , Feminino , Masculino , Animais , DNA , Índia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Native Sikkimese yak in Sikkim state of India is a pastoral treasure being raised through centuries-old transhumance practices and has evolved in response to natural and man-made selection. Currently, the population of Sikkimese yak is at risk with about five thousand total headcounts. Characterization is essential for taking appropriate decisions for conservation of any endangered population. In an attempt to phenotypically characterize the Sikkimese yaks, this study recorded phenotypic morphometric traits information, viz., body length (LG), height at withers (HT), heart girth (HG), paunch girth (PG), horn length (HL), horn circumference (HC), distance between horns (DbH), ear length (EL), face length (FL), face width (FW), and tail length with switch (TL), on 2154 yaks of both sexes. Multiple correlation estimation highlighted that HG and PG, DbH and FW, and EL and FW were highly correlated. Using principal component analysis, LG, HT, HG, PG, and HL were found to be the most important traits for phenotypic characterization of Sikkimese yak animals. Discriminant analysis based on different locations of Sikkim hinted at the existence of two separate clusters, however, broadly, phenotypic uniformity could be observed. Subsequent genetic characterization can offer greater insights and can pave the way for future breed registration and conservation of the population.
Assuntos
Fenótipo , Masculino , Feminino , Animais , Bovinos/genética , Índia , SiquimRESUMO
The grey type donkeys of Braj region of Uttar Pradesh in India were genetically characterized using ten heterologous microsatellite loci. At these loci the PCR product size ranged from 75-95 bp at locus HTG6 to 251-277 bp at locus COR18. The observed number of alleles varied from 4 (HTG15) to 10 (HTG7 and AHT4) with a mean of 7.50 ± 1.96. The observed heterozygosity ranged from 0.46 (HTG6 and NVHEQ54) to 0.79 (COR18) with a mean of 0.66 ± 0.12. The mean genetic diversity estimate (FIS) was 0.157. When these donkeys were compared on the basis of allelic frequency data at these loci to the brown type donkeys of Ladakh, Spiti and Rayalseema regions in the union territories/states of Ladakh, Himachal Pradesh and Andhra Pradesh, respectively, they clustered independently from these three donkey populations in a dendrogram based on Goldstein's average square distances indicating their genetic distinctness.
Assuntos
Equidae , Variação Genética , Animais , Equidae/genética , Variação Genética/genética , Frequência do Gene , Heterozigoto , Índia , Repetições de Microssatélites/genética , Alelos , Genética PopulacionalRESUMO
Among different cattle types, Bos indicus are known for their ability to better resist the tropical microbial infections comparatively, wherein MHC molecules play a significant role. In this study allelic diversity at MHC locus, DQA of Bos indicus, Bos taurus and crossbred of taurine-indicus has been explored to understand the possible role of MHC region in differential immune response. Thirty nine different DQA alleles were identified, out of which 14 were novel, along with documentation of duplication of DQA alleles. Indicus cattle population presented diverse types of DQA alleles compared to crossbred and exotic. Translated amino acid sequence analysis indicated, codon 64 and 50 of peptide binding sites being highly polymorphic and most of the indicus cattle presented alanine and arginine amino acid at position 64 and 50. Within breed genetic variation found to be higher than between breeds. Because of their ability to bind and subsequently respond to a wide array of antigens, the newly identified DQA alleles with high diversity present in the form of duplicated haplotypes in different combinations in cattle populations provided significant insights into probable role of this MHC locus in better tropical disease combating ability and genetic fitness of indicus cattle.
Assuntos
Genes MHC da Classe II , Bovinos/genética , Animais , Alelos , Genes MHC da Classe II/genética , Haplótipos/genéticaRESUMO
The present investigation was focused to study genomic diversity of Indian swamp buffalo populations through reduced representation approach (ddRAD). The heterozygosity (FST) among the swamp buffaloes was 0.11 between Assam and Manipuri; 0.20 between swamp (Manipuri) and riverine buffaloes; 0.30 between swamp (Manipuri) and cattle. The average observed and expected heterozygosity in swamp buffalo populations was 0.254 and 0.221 respectively. The Inbreeding coefficient (FIS) value was 0.02 among the swamp buffaloes. PCA and structure analysis revealed Manipuri swamp buffalo was genetically distinct and closely related to Nagaland swamp buffalo and least to Assam swamp buffalo. Identification of selective sweeps revealed 1087 regions to have undergone selection related to immune response, adaptation and nervous system. A total of 3451 SSRs were identified in the genome of swamp buffaloes. The study evidenced the genomic diversity in the swamp buffalo populations and its uniqueness in comparison with riverine buffalo and cattle.
Assuntos
Búfalos/genética , Variação Genética , Animais , Búfalos/classificação , Genômica/normas , Técnicas de Genotipagem , Índia , Repetições de Microssatélites , Anotação de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Genotypes at four casein (CSN) loci-A26181G of CSN1S1, C6227T of CSN1S2, A8101C of CSN2, and A13104C of CSN3-along with non-genetic factors were studied for their effects on various milk protein traits in 100 crossbred cows with major inheritance of Holstein Frisian (Bos taurus) and Tharparkar (Bos indicus). Results demonstrated the presence of all CSN genotypes with a predominance of heterozygotes. At CSN2 (A8101C; His67Pro) locus, the A2 allele, desirable for human health, was present in 62% as heterozygous and 29% in homozygous condition. Among non-genetic factors, parity of the cows had a significant influence on the milk protein traits in these crossbreds. The genotypes at CSN1S1, CSN2, and CSN3 loci were found to influence (p<0.05 to 0.01) the casein and whey protein yields and composition traits. The casein index and total milk yield were most influenced by the CSN1S2 locus. The AA (A1 milk) genotype of CSN2 had significantly higher yields and percentages of casein and whey proteins. Positive influence of CC genotype of CSNS3 on milk proteins of was observed similar to Bos taurus cows; however, such influence of AA genotype of CSN2 locus may be distinctive to the crossbred cows maintained in subtropical condition. Overall, the results revealed the diverse effects of CSN genotypes on milk proteins in crossbred cattle.
Assuntos
Caseínas , Proteínas do Leite , Animais , Caseínas/genética , Bovinos/genética , Feminino , Genótipo , Leite/química , Proteínas do Leite/análise , Paridade , Gravidez , Clima TropicalRESUMO
Holstein haplotype (HH) 1, 3 and 4 are lethal mutations, responsible for early embryonic losses in Holstein Friesian (HF) cattle, worldwide. Three PCR based assays - tetra Amplification Refractory Mutation System PCR, PCR primer induced restriction analysis and PCR-restriction fragment length polymorphism techniques for screening of HH1, 3 and 4, respectively were developed and validated. During screening, six among 60 HF bulls were found as carrier for either of three mutations. These PCR assays are highly accurate and reproducible and can be used for screening of the haplotypes in HF cattle.
Assuntos
Bioensaio/métodos , Bovinos/genética , Haplótipos/genética , Reação em Cadeia da Polimerase/métodos , Animais , Sequência de Bases , Loci Gênicos , HeterozigotoRESUMO
In this study, mitochondrial D-loop sequence data on riverine, swamp and hybrid buffaloes from India have been generated and compared with other reported Indian riverine, Chinese and Bangladeshi swamp buffalo populations. Sequence analysis revealed the presence of 132 haplotypes, with a haplotype diversity of 0.9611 ± 0.0045 and a nucleotide diversity of 0.04801 ± 0.00126. For the first time, the existence of riverine-swamp hybrids among the Indian Chilika buffalo population has been recorded, having 49 chromosomes, which was also confirmed by mitochondrial haplotype sharing between Chilika and Indian swamp as well as Chinese swamp buffalo populations in the network analysis. Phylogenetic analysis documents the sharing of reported pre-domestication haplogroups 'SA1', 'SA2', 'SA3' and 'SB1' between the Chilika and swamp buffalo populations of India, China and Bangladesh, an indication of the migration of swamp buffaloes towards Bangladesh and adjoining lower parts of India and north towards Chinese domestication sites. The results have also been supplemented by multidimension scaling, grouping Indian and Chinese swamp buffaloes more closely together with Bangladeshi buffaloes, but into a separate quadrant, whereas Chilika grouped away from other riverine as well as swamp buffaloes. These findings thus confirm the previous reports that the northeast region of India, close to the Indo-China border, is the point of evolution of swamp buffaloes with multiple sites of domestication.
Assuntos
Búfalos/genética , Domesticação , Variação Genética , Haplótipos , Animais , DNA Mitocondrial , Hibridização Genética , Índia , Filogenia , FilogeografiaRESUMO
Brucellosis is the most dreadful disease among bovines, although breed differences have been observed in prevalence of disease, worldwide. In present study, antibody response and relative expression of proinflammatory cytokines was compared in Bos indicus (zebu) and Bos taurus × Bos indicus (crossbred) cattle vaccinated by live attenuated Brucella abortus S19 antigen. Six female calves (4-6 months age) of both groups were vaccinated with B.abortus S19 strain. Blood samples were collected before vaccination (0d) and 7th (7d), 14th (14d) and 28th (28d) days after vaccination. Indirect ELISA showed high (p < .05) anti-Brucella antibody level after vaccination; with no significant difference between the groups. During Real-time expression, IFNγ, TNFα, IL6 and IL10 genes initially showed down regulation followed by upregulation in both the groups; however, the trend was much prominent in crossbreds. The expressions of IFNγ, TNFα and IL6, proinflammatory molecules important for initial containment of the Brucella were significantly (p < .01) higher in crossbred. The study showed that the Sahiwal cattle were less responsive to B.abortus S19 antigen than crossbreds, indicating its lower sensitivity to the Brucella, comparatively. In contrary, higher expression of the proinflammatory molecules in crossbreds could be important for containment of the organism during initial stage of infection.
Assuntos
Vacina contra Brucelose/imunologia , Brucelose Bovina/prevenção & controle , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Animais , Antígenos de Bactérias , Brucella abortus , Bovinos , Citocinas/genética , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Leucócitos Mononucleares/metabolismo , RNA/genética , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterináriaRESUMO
The present study was carried out to identify and annotate the genome wide SNPs in Murrah buffalo genome. A total of 21.2 million raw reads from 4 pooled female Murrah buffalo samples were obtained using restriction enzyme digestion followed by sequencing with Illumina Hiseq 2000. After quality filtration, the reads were aligned to Murrah buffalo genome (ICAR-NBAGR) and Water buffalo genome (UMD_CASPUR_WB_2.0) which resulted in 99.37% and 99.67% of the reads aligning, respectively. A total of 130,688 high quality SNPs along with 35,110 indels were identified versus the Murrah bufffalo genome. Similarly 219,856 high quality SNPs along with 15,201 indels were identified versus the Water buffalo genome. We report 483 SNPs in 66 genes affecting Milk Production, 436 SNPs in 38 genes affecting fertility and 559 SNPs in 72 genes affecting other major traits. The average genome coverage was 13.4% and 14.8% versus the Murrah and Water buffalo genomes, respectively.
Assuntos
Búfalos/genética , Estudo de Associação Genômica Ampla , Genoma , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , AnimaisRESUMO
The present study was carried out to identify genome-wide genetic markers and variants in candidate genes for production and reproduction traits in Sahiwal cattle using a cost-effective reduced representation sequencing method. A total of 258,231 genome-wide SNPs were identified in Sahiwal cattle with reference to Bos indicus genome, of which 150,231 were novel SNPs. Among the high-confidence SNPs identified, 91.86% and 27.30% were genotyped in 50% and 100% of the samples. Mapping of the identified SNPs revealed 525 SNPs in candidate genes related to production traits while 333 SNPs were mapped to candidate genes related to reproduction traits. The SNPs identified in this study will facilitate further insights on tropical adaptation, domestication history and population structure of indigenous cattle. The variants in candidate genes identified in this study will serve as useful genetic tools, in the quest for phenotype modifying nucleotide change and help in designing appropriate genetic improvement programs.
Assuntos
Bovinos/genética , Fertilidade/genética , Estudo de Associação Genômica Ampla , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/fisiologia , Marcadores Genéticos , Genótipo , FenótipoRESUMO
In this study, genetic diversity analysis of MHC class II-DQA locus helped in identification of 25 new Bubu-DQA nucleotide sequences in swamp buffaloes (Bubalus bubalis carabanesis, Bubu). Phylogenetic analysis revealed the distribution of the buffalo DQA sequences in two major clusters of DQA1 and DQA2 genes, sharing common lineages with corresponding cattle alleles, possibly due to trans-species evolution. However, a highly divergent sequence, Bubu-DQA*2501, homologous to cattle (BoLA) DQA3 allele, was identified, indicating the existence of an additional locus; putative DQA3 in buffalo. PCR-RFLP analysis revealed extensive duplication of DQA locus in swamp buffaloes, sharing DQA1, DQA2, and DQA3 alleles in different combinations in duplicated haplotypes. Higher dN than dS values and Wu-Kabat variability at peptide-binding regions in Bubu-DQA indicated high polymorphism with balancing selection. Levels of genetic diversity within DQA sequences and duplication in a small population of swamp buffalo indicate the genetic richness of the species, important for fitness.
Assuntos
Evolução Biológica , Búfalos/genética , Variação Genética/genética , Haplótipos/genética , Antígenos de Histocompatibilidade Classe II/genética , Alelos , Sequência de Aminoácidos , Animais , Bovinos , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Especificidade da EspécieRESUMO
Haptoglobin (Hp) protein has high affinity for hemoglobin (Hb) binding during intravascular hemolysis and scavenges the hemoglobin induced free radicals. Earlier reports indicate about uniqueness of Hp molecule in human and cattle, but in other animals, it is not much studied. In this paper, we characterized buffalo Hp molecule and determined its molecular structure, evolutionary importance, and tissue expression. Comparative analysis and predicted domain structure indicated that the buffalo Hp has an internal duplicated region in α-chain only similar to an alternate Hp2 allele in human. This duplicated part encoded for an extra complement control protein CCP domain. Phylogenetic analysis revealed that buffalo and other ruminants were found to group together separated from all other non-ruminants, including human. The key amino acid residues involved in Hp and Hb as well as Hp and macrophage scavenger receptor, CD163 interactions in buffalo, depicted a significant variation in comparison to other non-ruminant species. Constitutive expression of Hp was also confirmed across all the vital tissues of buffalo, for the first time. Results revealed that buffalo Hp is both structurally and functionally conserved, having internal duplication in α-chain similar to human Hp2 and other ruminant species, which might have evolved separately as a convergent evolutionary process. Furthermore, the presence of extra Hp CCP domain possibly in all ruminants may have an effect during dimerization of molecule in these species.
Assuntos
Búfalos/genética , Haptoglobinas/genética , Sequência de Aminoácidos , Animais , Haptoglobinas/análise , Haptoglobinas/metabolismo , Humanos , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de SequênciaRESUMO
Phenotypic characterization and body biometric in 13 traits (height at withers, body length, chest girth, paunch girth, ear length, tail length, length of tail up to switch, face length, face width, horn length, circumference of horn at base, distances between pin bone and hip bone) were recorded in 233 adult Gojri buffaloes from Punjab and Himachal Pradesh states of India. Traits were analysed by using varimax rotated principal component analysis (PCA) with Kaiser Normalization to explain body conformation. PCA revealed four components which explained about 70.9% of the total variation. First component described the general body conformation and explained 31.5% of total variation. It was represented by significant positive high loading of height at wither, body length, heart girth, face length and face width. The communality ranged from 0.83 (hip bone distance) to 0.45 (horn length) and unique factors ranged from 0.16 to 0.55 for all these 13 different biometric traits. Present study suggests that first principal component can be used in the evaluation and comparison of body conformation in buffaloes and thus provides an opportunity to distinguish between early and late maturing to adult, based on a small group of biometric traits to explain body conformation in adult buffaloes.
RESUMO
TLR8 mediates antiviral immunity by recognizing ssRNA viruses and triggers potent antiviral and antitumor immune responses. In this study, approximately 3.5 Kb nucleotide sequence data of caprine TLR8 gene were generated from one sample each of twelve different Indian goat breeds belonging to different geographical regions. Cloning and characterization of cDNA synthesized from RNA purified from goat spleen revealed TLR8 ORF to be of 3102 nucleotides long coding for 1033 amino acids similar to other ruminant species, that is sheep, buffalo and cattle. The sequence analysis at nucleotide level revealed goat TLR8 to be closer to buffalo sharing 99.6% homology, followed by cattle and sheep. Simple Modular Architecture Research Tool (SMART) used for the structural analysis of goat TLR8 showed the presence of 16 leucine-rich repeats (LRRs) along with single Toll/interleukin-1 receptor (TIR) domain. TIR domain when compared with other livestock species was found to be conserved in ruminant species goat, sheep, cattle and buffalo. The phylogenetic analysis also revealed grouping of all ruminant species together, goat being closer to buffalo followed by cattle and sheep. Total 4 polymorphic sites were observed in TLR8 gene of one specimen goat representing each of 12 different breeds studied, all of which were synonymous and present within the coding region. Of these 4 SNPs, two were in ectodomains, one in TIR domain and one was found to be present in transmembrane domain. PCR-RFLP genotyping of two of the SNPs indicated variations in allele frequencies among different goat breeds. The expression profiling in 13 tissues of goat showed maximum expression of TLR8 gene in kidney followed by spleen, lung and lymph node. Overall, our results indicate conservation of TLR8 gene among the ruminant species and low variation within Indian goat breeds.
Assuntos
Ruminantes/genética , Receptor 8 Toll-Like/genética , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Cabras/genética , Cabras/imunologia , Dados de Sequência Molecular , Filogenia , Domínios e Motivos de Interação entre Proteínas , Ruminantes/classificação , Alinhamento de Sequência , Receptor 8 Toll-Like/químicaRESUMO
The yak (Bos grunniens), renowned for its adaptability to extreme cold and hypoxic conditions, stands as a remarkable domestic animal crucial for sustaining livelihoods in harsh climates. We conducted a comprehensive analysis of the whole genome sequence data from three distinct Indian yak populations: Arunachali yak (n = 10), Himachali yak (n = 10), and Ladakhi yak (n = 10). The genomic data for Indian yaks were meticulously generated by our laboratory and compared with their Chinese counterpart, the Jinchuan yak (n = 8), for a more nuanced understanding. Our investigation revealed a total of 37,437 runs of homozygosity (ROH) segments in 34 animals representing four distinct yak populations. The Jinchuan yak population exhibited the highest proportion, constituting 80.8 % of total ROHs, predominantly as small segments (<0.1 Mb), accounting for 63 % of the overall ROHs. Further analysis uncovered a significantly higher degree of inbreeding in Chinese yaks compared to their Indian counterparts. The Indian yak populations, in contrast, demonstrated relatively lower and consistent levels of inbreeding. Moreover, we identified ROH hotspots that covered at least 60 % of individuals in our study, indicating their pivotal role in environmental adaptation. A total of five hotspot regions were detected, housing genes such as ENSBGRG00000015023 (WNT2), YIPF4, SPAST, TLN2, and DSG4. These genes are associated with traits including hair follicle initiation, nutrient stress response, microtubule assembly, development of cardiac muscle, hair follicle, and coat color. This observation strongly suggests that there is substantial selection acting on these genes, emphasizing their important role in environmental adaptation among yak populations.
Assuntos
Variação Genética , Endogamia , Animais , Bovinos/genética , Índia , Homozigoto , Genoma , Genômica/métodos , Genética Populacional , Polimorfismo de Nucleotídeo ÚnicoRESUMO
The present study was aimed to identify the genome-wide SNPs associated with production and reproduction traits in 96 Indian Murrah buffalo genotyped based on ddRAD approach using Genome-Wide Association Study (GWAS) along with phenotypes of contemporary animals using mixed linear model for production and reproduction traits. A total of 27,735 SNPs identified using ddRAD approach in 96 Indian Murrah buffaloes were used for GWAS. A total of 28 SNPs were found to be associated with production and reproductive traits. Among these, 14 SNPs were present in the intronic region of AK5, BACH2, DIRC2, ECPAS, MPZL1, MYO16, QRFPR, RASGRF1, SLC9A4, TANC1, and TRIM67 genes and one SNP in long non-coding region of LOC102414911. Out of these 28 SNPs, 9 SNPs were found to have pleiotropic effect over milk production traits and were present in chromosome number BBU 1, 2, 4, 6, 9, 10, 12, 19, and 20. SNPs in the intronic region of AK5, TRIM67 genes were found to be associated with milk production traits. Eleven and five SNPs in the intergenic region were associated with milk production and reproduction traits respectively. The above genomic information may be used for selection of Murrah animals for genetic improvement.
RESUMO
In this study, approximately 3.4 kb nucleotide sequence of caprine TLR7 (Toll-like receptor 7) gene was generated from twelve different Indian goat breeds belonging to different geographical regions. Goat TLR7 gene ORF (Open Reading Frame) was found to be 3141 nucleotides long coding for 1046 amino acids similar to sheep. The sequence analysis at nucleotide level revealed goat TLR7 having 99.5% homology with sheep, followed by other livestock species. Simple Modular Architecture Research Tool (SMART) was used for the structural analysis of goat TLR7 that showed the presence of 22 leucine rich repeats (LRRs) along with single Toll/interleukin-1 receptor (TIR) domains. TIR domain, when compared, was found to be similar in ruminant species, goat, sheep, cattle, and buffalo. The phylogenetic analysis also revealed grouping of all ruminant species together, goat being closer to sheep followed by cattle and buffalo. A total of 22 polymorphic sites were observed in TLR7 gene of 24 goats representing 12 different breeds, out of which 19 were present within the coding region and three in 3'UTR. Out of the seven nonsynonymous SNPs, two were in ectodomains and one in TIR domain. Overall our results indicate substantial variation within goat TLR7 gene, which could be exploited for association with disease susceptibility.
Assuntos
Cabras/genética , Receptor 7 Toll-Like/genética , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Biotecnologia , Bovinos , Primers do DNA/genética , Cabras/imunologia , Índia , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Polimorfismo de Nucleotídeo Único , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ruminantes/classificação , Ruminantes/genética , Ruminantes/imunologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Receptor 7 Toll-Like/químicaRESUMO
The present study was carried out in Tharparkar cattle for identification of genome-wide SNPs and microsatellites, and then annotate the identified high-quality SNPs to milk production, fertility, carcass, adaptability and immune response of economically important traits. A total of 146,011 SNPs were identified with respect to Bos taurus reference genome which are indicus specific, out of which 10,519 SNPs were found to be novel. Similarly, a total of 87,047 SNPs were identified with respect to Bos indicus reference genome. After final annotation of SNPs identified with respect to Bos indicus reference genome, 2871 SNPs were found to be associated in 383 candidate genes having to do with milk production, fertility, carcass, immune response and adaptability traits. Following that, 2571 microsatellites were identified. The information mined from the data might be of importance for the future breed improvement programs, conservation efforts and for enhancing the SNPs density of the existing bovine SNP chips.
RESUMO
The present study focused upon identification of genome-wide SNPs through the reduced representation approach and to study the genomic divergence of the Indian yak populations. A total of 80 samples belonging to Arunachali yak (N = 20), Himachali yak (N = 20), Ladakhi yak (N = 20) and Sikkimi yak (N = 20) of India were used in the study. The results of the study revealed a total of 579575 high quality SNPs along with 50319 INDELs in the Indian yaks. The observed heterozygosity was found to be high in Himachali yak, followed by Arunachali yak, Ladakhi yak and Sikkimi yaks. The Sikkimi yaks was found to be genetically distant, followed by Ladakhi yaks which was observed to have some few individuals from Arunachali and Himachali yaks. Arunachali and Himachali yaks are found to get clustered together and are genetically similar. The study provides evidence about the genomic diversity in the Indian yak populations and information generated in the present study may help to formulate a suitable breeding plan for endangered Indian yaks. Moreover, the unique yak populations identified in the study will further help to focus attention for future characterization and prioritization of the animals for conservation purposes through the ddRAD approach.