Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 96(5): e29664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727137

RESUMO

The causative agent of coronavirus disease 2019 (COVID-19), known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread accumulatively to 240 countries and continues to evolve. To gain a comprehensive understanding of the epidemiological characteristics of imported variants in China and their correlation with global circulating variants, genomic surveillance data from 11 139 imported COVID-19 cases submitted by Chinese provincial CDC laboratories between 2021 and 2022 were analyzed. Consensus sequences underwent rigorous quality checks, followed by amino acid mutations analysis using Nextclade. Sequences with satisfactory quality control status were classified according to the Pango nomenclature. The results showed that the dominant variants in imported cases reflected the global epidemic trend. An increase in the number of imported SARS-CoV-2 lineages monitored in China in the second half of 2022, and the circulating Omicron subvariants changed from the ancestral lineages of BA.5 and BA.2 into the lineages containing key amino acid mutations of spike protein. There was significant variation in the detection of Omicron subvariants among continents (χ2 = 321.968, p < 0.001) in the second half of 2022, with four lineages (BA.2.3.7, BA.2.2, BA.5.2.7, and XBB.1.2) identified through imported surveillance mainly prevalent respectively in Taiwan, China, Hong Kong SAR, China, Russian Federation, and Singapore. These findings revealed the alterations in circulating imported variants from 2021 to 2022 in China, reflecting the higher diversity of lineages in the second half of 2022, and revealed the predominant lineages of countries or regions that are in close contacts to China, providing new insights into the global prevalence of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , China/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/classificação , Prevalência , Glicoproteína da Espícula de Coronavírus/genética , Filogenia , Mutação , Genoma Viral/genética , Variação Genética
2.
Front Public Health ; 12: 1436503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157525

RESUMO

Background: The COVID-19 pandemic underscored the critical importance of biosafety in microbiology laboratories worldwide. In response, China has ramped up its efforts to enhance biosafety measures within its Centers for Disease Control and Prevention (CDC) laboratories. This study provides the first comprehensive assessment of biosafety practices across provincial, city, and county levels of CDC microbiology laboratories in China. Methods: We conducted a nationwide cross-sectional survey from 2021 to 2023, targeting staff from microbiology laboratories within CDCs at all administrative levels in China. Stratified sampling was employed to select respondents, ensuring a representative mix across different CDC hierarchies, job titles, and academic qualifications. The survey encompassed questions on biosafety training, the presence of BSL-2 and BSL-3 laboratories, adherence to general biosafety guidelines, and management practices regarding specimens, reagents, and consumables. Statistical analysis was performed to identify significant differences in biosafety practices among different CDC levels. Results: A total of 990 valid responses were received, highlighting a nearly universal presence (98.69%) of BSL-2 laboratories and a significant yet varied presence of BSL-3 laboratories across the CDC network. The survey revealed high levels of biosafety training (98.69%) and adherence to biosafety protocols. However, challenges remain in the consistent application of certain safety practices, especially at lower administrative levels. Notable differences in the management of specimens, reagents, and consumables point to areas for improvement in ensuring biosecurity. Conclusion: Our findings indicate a robust foundation of biosafety practices within CDC microbiology laboratories in China, reflecting significant advancements in the wake of the Biosecurity Law's implementation. Nevertheless, the variability in adherence to specific protocols underscores the need for ongoing training, resources allocation, and policy refinement to enhance biosafety standards uniformly across all levels. This study's insights are crucial for guiding future improvements in laboratory biosafety, not just in China but potentially in other countries enhancing their public health infrastructures.


Assuntos
Contenção de Riscos Biológicos , Laboratórios , China , Humanos , Estudos Transversais , Laboratórios/normas , Contenção de Riscos Biológicos/normas , Inquéritos e Questionários , COVID-19/prevenção & controle
3.
China CDC Wkly ; 6(15): 324-331, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736991

RESUMO

Introduction: In the first half of 2023, a global shift was observed towards the predominance of XBB variants. China faced a significant epidemic between late 2022 and early 2023 due to Omicron subvariants BA.5.2 and BF.7. This study aims to depict the evolving variant distribution among provincial-level administrative divisions (PLADs) in China and explore the factors driving the predominance of XBB replacement. Methods: Sequences from local and imported coronavirus disease 2019 (COVID-19) cases recorded between January 1 and June 30, 2023, were included. The study analyzed the changing distribution of viral variants and assessed how the prior dominance of specific variants, XBB subvariants, and imported cases influenced the prevalence of the XBB replacement variant. Results: A total of 56,486 sequences were obtained from local cases, and 8,669 sequences were from imported cases. Starting in April, there was a shift in the prevalence of XBB from imported to local cases, with varying dominance among PLADs. In PLADs previously high in BF.7, the rise of XBB was delayed. A positive correlation was found between XBB proportions in imported cases from January to March and local cases in April. The distribution pattern of XBB subvariants differed between local and imported cases within the same PLAD. No significant differences were noted in the replacement rates of XBB subvariants. Conclusions: The timing of XBB dominance differed among various PLADs in China in the first half of 2023, correlating closely with the prevalence of XBB variants among imported cases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA