Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985827

RESUMO

Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.

2.
J Physiol ; 602(6): 1211-1225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381050

RESUMO

Gestational hypoxia adversely affects uterine artery function, increasing complications. However, an effective therapy remains unidentified. Here, we show in rodent uterine arteries that hypoxic pregnancy promotes hypertrophic remodelling, increases constrictor reactivity via protein kinase C signalling, and triggers compensatory dilatation via nitric oxide-dependent mechanisms and stimulation of large conductance Ca2+ -activated K+ -channels. Maternal in vivo oral treatment with the mitochondria-targeted antioxidant MitoQ in hypoxic pregnancy normalises uterine artery reactivity and prevents vascular remodelling. From days 6-20 of gestation (term ∼22 days), female Wistar rats were randomly assigned to normoxic or hypoxic (13-14% O2 ) pregnancy ± daily maternal MitoQ treatment (500 µm in drinking water). At 20 days of gestation, maternal, placental and fetal tissue was frozen to determine MitoQ uptake. The uterine arteries were harvested and, in one segment, constrictor and dilator reactivity was determined by wire myography. Another segment was fixed for unbiased stereological analysis of vessel morphology. Maternal administration of MitoQ in both normoxic and hypoxic pregnancy crossed the placenta and was present in all tissues analysed. Hypoxia increased uterine artery constrictor responses to norepinephrine, angiotensin II and the protein kinase C activator, phorbol 12,13-dibutyrate. Hypoxia enhanced dilator reactivity to sodium nitroprusside, the large conductance Ca2+ -activated K+ -channel activator NS1619 and ACh via increased nitric oxide-dependent mechanisms. Uterine arteries from hypoxic pregnancy showed increased wall thickness and MitoQ treatment in hypoxic pregnancy prevented all effects on uterine artery reactivity and remodelling. The data support mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy. KEY POINTS: Dysfunction and remodelling of the uterine artery are strongly implicated in many pregnancy complications, including advanced maternal age, maternal hypertension of pregnancy, maternal obesity, gestational diabetes and pregnancy at high altitude. Such complications not only have immediate adverse effects on the growth of the fetus, but also they can also increase the risk of cardiovascular disease in the mother and offspring. Despite this, there is a significant unmet clinical need for therapeutics that treat uterine artery vascular dysfunction in adverse pregnancy. Here, we show in a rodent model of gestational hypoxia that in vivo oral treatment of the mitochondria-targeted antioxidant MitoQ protects against uterine artery vascular dysfunction and remodelling, supporting the use of mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy.


Assuntos
Placenta , Artéria Uterina , Humanos , Ratos , Animais , Gravidez , Feminino , Placenta/metabolismo , Artéria Uterina/fisiologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Roedores , Óxido Nítrico/metabolismo , Ratos Wistar , Hipóxia , Proteína Quinase C/metabolismo , Mitocôndrias/metabolismo
3.
J Anat ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735860

RESUMO

The specific biology of the male breast remains relatively unexplored in spite of the increasing global prevalence of male breast cancer. Delineation of the microenvironment of the male breast is restricted by the low availability of human samples and a lack of characterisation of appropriate animal models. Unlike the mouse, the male ovine gland persists postnatally. We suggest that the male ovine mammary gland constitutes a promising adjunctive model for the male breast. In this study, we evaluate the male ovine mammary gland microenvironment, comparing intact and neutered males. Assessment of the glandular histo-anatomy highlights the resemblance of the male gland to that of neonatal female sheep and confirms the presence of rudimentary terminal duct lobular units. Irrespective of neutered status, cell proliferation in epithelial and stromal compartments is similarly low in males, and cell proliferation in epithelial cells and in the intralobular stroma is significantly lower than in pubertal female sheep. Between 42% and 72% of the luminal mammary epithelial cells in the male gland express the androgen receptor and expression is significantly reduced by neutering. Luminal epithelial cells within the intact and neutered male gland also express oestrogen receptor alpha, but minimal progesterone receptor expression is observed. The distribution of leukocytes within the ducts and stroma is similar to the mammary gland of female sheep and females of other species. Both macrophages and T lymphocytes are intercalated in the epithelial bilayer and are more abundant in the intralobular stroma than the interlobular stroma, suggesting that they may have a protective immunological function within the vestigial glandular tissue of the male sheep. Mast cells are also observed within the stroma. These cells cluster near the glandular tissue and are frequently located adjacent to blood vessels. The abundance of mast cells is significantly higher in intact males compared to neutered males, suggesting that hormone signalling may impact mast cell recruitment. In this study, we demonstrate the utility of the male ovine mammary gland as a model for furthering our knowledge of postnatal male mammary biology.

4.
FASEB J ; 37(6): e22887, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37132324

RESUMO

Antenatal glucocorticoids accelerate fetal lung maturation and reduce mortality in preterm babies but can trigger adverse effects on the cardiovascular system. The mechanisms underlying off-target effects of the synthetic glucocorticoids mostly used, Dexamethasone (Dex) and Betamethasone (Beta), are unknown. We investigated effects of Dex and Beta on cardiovascular structure and function, and underlying molecular mechanism using the chicken embryo, an established model system to isolate effects of therapy on the developing heart and vasculature, independent of effects on the mother or placenta. Fertilized eggs were treated with Dex (0.1 mg kg-1 ), Beta (0.1 mg kg-1 ), or water vehicle (Control) on embryonic day 14 (E14, term = 21 days). At E19, biometry, cardiovascular function, stereological, and molecular analyses were determined. Both glucocorticoids promoted growth restriction, with Beta being more severe. Beta compared with Dex induced greater cardiac diastolic dysfunction and also impaired systolic function. While Dex triggered cardiomyocyte hypertrophy, Beta promoted a decrease in cardiomyocyte number. Molecular changes of Dex on the developing heart included oxidative stress, activation of p38, and cleaved caspase 3. In contrast, impaired GR downregulation, activation of p53, p16, and MKK3 coupled with CDK2 transcriptional repression linked the effects of Beta on cardiomyocyte senescence. Beta but not Dex impaired NO-dependent relaxation of peripheral resistance arteries. Beta diminished contractile responses to potassium and phenylephrine, but Dex enhanced peripheral constrictor reactivity to endothelin-1. We conclude that Dex and Beta have direct differential detrimental effects on the developing cardiovascular system.


Assuntos
Betametasona , Glucocorticoides , Embrião de Galinha , Feminino , Gravidez , Animais , Betametasona/efeitos adversos , Glucocorticoides/efeitos adversos , Coração , Artérias , Dexametasona/efeitos adversos
5.
J Physiol ; 601(16): 3647-3665, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37467062

RESUMO

Chronic fetal hypoxaemia is a common pregnancy complication that increases the risk of infants experiencing respiratory complications at birth. In turn, chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in animal models of hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. However, whether antenatal antioxidant therapy confers any benefit on lung development in complicated pregnancies has not yet been investigated. Here, we tested the hypothesis that maternal antenatal treatment with MitoQ will protect the developing lung in hypoxic pregnancy in sheep, a species with similar fetal lung developmental milestones as humans. Maternal treatment with MitoQ during late gestation promoted fetal pulmonary surfactant maturation and an increase in the expression of lung mitochondrial complexes III and V independent of oxygenation. Maternal treatment with MitoQ in hypoxic pregnancy also increased the expression of genes regulating liquid reabsorption in the fetal lung. These data support the hypothesis tested and suggest that MitoQ as an antenatal targeted antioxidant treatment may improve lung maturation in the late gestation fetus. KEY POINTS: Chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. MitoQ is a targeted antioxidant that uses the cell and the mitochondrial membrane potential to accumulate within the mitochondria. Treatment of healthy or hypoxic pregnancy with MitoQ, increases the expression of key molecules involved in surfactant maturation, lung liquid reabsorption and in mitochondrial proteins driving ATP synthesis in the fetal sheep lung. There were no detrimental effects of MitoQ treatment alone on the molecular components measured in the present study, suggesting that maternal antioxidant treatment has no effect on other components of normal maturation of the surfactant system.


Assuntos
Antioxidantes , Hipóxia , Compostos Organofosforados , Ubiquinona/análogos & derivados , Humanos , Recém-Nascido , Gravidez , Feminino , Animais , Ovinos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Pulmão/fisiologia , Tensoativos/metabolismo , Tensoativos/farmacologia
6.
FASEB J ; 35(5): e21446, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788974

RESUMO

Mitochondria-derived oxidative stress during fetal development increases cardiovascular risk in adult offspring of pregnancies complicated by chronic fetal hypoxia. We investigated the efficacy of the mitochondria-targeted antioxidant MitoQ in preventing cardiovascular dysfunction in adult rat offspring exposed to gestational hypoxia, integrating functional experiments in vivo, with those at the isolated organ and molecular levels. Rats were randomized to normoxic or hypoxic (13%-14% O2 ) pregnancy ± MitoQ (500 µM day-1 ) in the maternal drinking water. At 4 months of age, one cohort of male offspring was chronically instrumented with vascular catheters and flow probes to test in vivo cardiovascular function. In a second cohort, the heart was isolated and mounted onto a Langendorff preparation. To establish mechanisms linking gestational hypoxia with cardiovascular dysfunction and protection by MitoQ, we quantified the expression of antioxidant system, ß-adrenergic signaling, and calcium handling genes in the fetus and adult, in frozen tissues from a third cohort. Maternal MitoQ in hypoxic pregnancy protected offspring against increased α1 -adrenergic reactivity of the cardiovascular system, enhanced reactive hyperemia in peripheral vascular beds, and sympathetic dominance, hypercontractility and diastolic dysfunction in the heart. Inhibition of Nfe2l2-mediated oxidative stress in the fetal heart and preservation of calcium regulatory responses in the hearts of fetal and adult offspring link molecular mechanisms to the protective actions of MitoQ treatment of hypoxic pregnancy. Therefore, these data show the efficacy of MitoQ in buffering mitochondrial stress through NADPH-induced oxidative damage and the prevention of programmed cardiovascular disease in adult offspring of hypoxic pregnancy.


Assuntos
Antioxidantes/farmacologia , Doenças Cardiovasculares/prevenção & controle , Hipóxia Fetal/complicações , Mitocôndrias/metabolismo , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Feminino , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
7.
PLoS Biol ; 17(1): e2006552, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668572

RESUMO

Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.


Assuntos
Ácido Ascórbico/farmacologia , Retardo do Crescimento Fetal/fisiopatologia , Hipertensão/prevenção & controle , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/uso terapêutico , Feminino , Hipóxia Fetal/metabolismo , Hipóxia Fetal/fisiopatologia , Hipóxia , Óxido Nítrico , Estresse Oxidativo , Gravidez , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ovinos/fisiologia
8.
Pediatr Res ; 91(4): 828-838, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33859366

RESUMO

BACKGROUND: In the fetus, the appropriate balance of prooxidants and antioxidants is essential to negate the detrimental effects of oxidative stress on lung maturation. Antioxidants improve respiratory function in postnatal life and adulthood. However, the outcomes and biological mechanisms of antioxidant action in the fetal lung are unknown. METHODS: We investigated the effect of maternal daily vitamin C treatment (200 mg/kg, intravenously) for a month in late gestation (105-138 days gestation, term ~145 days) on molecular regulation of fetal lung maturation in sheep. Expression of genes and proteins regulating lung development was quantified in fetal lung tissue. The number of surfactant-producing cells was determined by immunohistochemistry. RESULTS: Maternal vitamin C treatment increased fetal lung gene expression of the antioxidant enzyme SOD-1, hypoxia signaling genes (HIF-2α, HIF-3α, ADM, and EGLN-3), genes regulating sodium movement (SCNN1-A, SCNN1-B, ATP1-A1, and ATP1-B1), surfactant maturation (SFTP-B and ABCA3), and airway remodeling (ELN). There was no effect of maternal vitamin C treatment on the expression of protein markers evaluated or on the number of surfactant protein-producing cells in fetal lung tissue. CONCLUSIONS: Maternal vitamin C treatment in the last third of pregnancy in sheep acts at the molecular level to increase the expression of genes that are important for fetal lung maturation in a healthy pregnancy. IMPACT: Maternal daily vitamin C treatment for a month in late gestation in sheep increases the expression of gene-regulating pathways that are essential for normal fetal lung development. Following late gestation vitamin C exposure in a healthy pregnancy, an increase in lung gene but not protein expression may act as a mechanism to aid in the preparation for exposure to the air-breathing environment after birth. In the future, the availability/development of compounds with greater antioxidant properties than vitamin C or more specific targets at the site of oxidative stress in vivo may translate clinically to improve respiratory outcomes in complicated pregnancies at birth.


Assuntos
Antioxidantes , Surfactantes Pulmonares , Adulto , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Feminino , Feto/metabolismo , Humanos , Pulmão , Gravidez , Surfactantes Pulmonares/metabolismo , Ovinos , Tensoativos
9.
FASEB J ; 34(12): 16504-16515, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094855

RESUMO

The use of statins in complicated pregnancy is being considered, as they protect endothelial function in the mother and placenta. However, whether statins affect cardiovascular function in the fetus is completely unknown. Here, we have determined the effects of pravastatin and underlying mechanisms on the cardiovascular system of the hypoxic chicken embryo, a model system that permits the direct effects of pravastatin on the developing offspring to be isolated independently of additional effects on the mother and/or placenta. Chicken embryos were incubated under normoxia or hypoxia (14% O2 ) from day 1 ± pravastatin (1 mg/kg/d) from day 13 of incubation (term is 21 days). On day 19 of incubation, hearts and vessels were isolated to determine changes in the cardiovascular structure and function. The data show that pravastatin protected the hypoxic chicken embryo against impaired cardiovascular dysfunction. Mechanisms involved in this protection included reduced oxidative stress, enhanced NO bioavailability, restored antioxidant defenses and normalized protein expression of RhoA in the embryonic heart, and improved NO-dependent vasodilator mechanisms in the peripheral circulation. Therefore, we show that the treatment of the chronically hypoxic chicken embryo with pravastatin from day 13 of incubation, equivalent to ca. 25 weeks of gestation in human pregnancy, has direct beneficial effects on the embryonic cardiovascular system. Therefore, pravastatin may be a candidate for human clinical translation to rescue fetal cardiovascular dysfunction in risky pregnancy.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Pravastatina/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Embrião não Mamífero/metabolismo , Feminino , Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Gravidez
10.
FASEB J ; 34(7): 9664-9677, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32502311

RESUMO

Antenatal glucocorticoid therapy reduces mortality in the preterm infant, but evidence suggests off-target adverse effects on the developing cardiovascular system. Whether deleterious effects are direct on the offspring or secondary to alterations in uteroplacental physiology is unclear. Here, we isolated direct effects of glucocorticoids using the chicken embryo, a model system in which the effects on the developing heart and circulation of therapy can be investigated, independent of effects on the mother and/or the placenta. Fertilized chicken eggs were incubated and divided randomly into control (C) or dexamethasone (Dex) treatment at day 14 out of the 21-day incubation period. Combining functional experiments at the isolated organ, cellular and molecular levels, embryos were then studied close to term. Chicken embryos exposed to dexamethasone were growth restricted and showed systolic and diastolic dysfunction, with an increase in cardiomyocyte volume but decreased cardiomyocyte nuclear density in the left ventricle. Underlying mechanisms included a premature switch from tissue accretion to differentiation, increased oxidative stress, and activated signaling of cellular senescence. These findings, therefore, demonstrate that dexamethasone treatment can have direct detrimental off-target effects on the cardiovascular system in the developing embryo, which are independent of effects on the mother and/or placenta.


Assuntos
Senescência Celular , Dexametasona/toxicidade , Fibrose/patologia , Glucocorticoides/toxicidade , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Embrião de Galinha , Galinhas , Fibrose/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos
11.
J Physiol ; 598(2): 249-263, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31802494

RESUMO

KEY POINTS: We introduce a technique to test whether intrinsic fetal heart rate variability (iFHRV) exists and we show the utility of the technique by testing the hypothesis that iFHRV is affected by chronic fetal hypoxia, one of the most common adverse outcomes of human pregnancy complicated by fetal growth restriction. Using an established late gestation ovine model of fetal development under chronic hypoxic conditions, we identify iFHRV in isolated fetal hearts and show that it is markedly affected by hypoxic pregnancy. Therefore, the isolated fetal heart has intrinsic variability and carries a memory of adverse intrauterine conditions experienced during the last third of pregnancy. ABSTRACT: Fetal heart rate variability (FHRV) emerges from influences of the autonomic nervous system, fetal body and breathing movements, and from baroreflex and circadian processes. We tested whether intrinsic heart rate variability (iHRV), devoid of any external influences, exists in the fetal period and whether it is affected by chronic fetal hypoxia. Chronically catheterized ewes carrying male singleton fetuses were exposed to normoxia (n = 6) or hypoxia (10% inspired O2 , n = 9) for the last third of gestation (105-138 days of gestation (dG); term ∼145 dG) in isobaric chambers. At 138 dG, isolated hearts were studied using a Langendorff preparation. We calculated basal intrinsic FHRV (iFHRV) indices reflecting iFHRV's variability, predictability, temporal symmetry, fractality and chaotic behaviour, from the systolic peaks within 15 min segments in each heart. Significance was assumed at P < 0.05. Hearts of fetuses isolated from hypoxic pregnancy showed approximately 4-fold increases in the Grid transformation as well as the AND similarity index (sgridAND) and a 4-fold reduction in the scale-dependent Lyapunov exponent slope. We also detected a 2-fold reduction in the Recurrence quantification analysis, percentage of laminarity (pL) and recurrences, maximum and average diagonal line (dlmax, dlmean) and the Multiscale time irreversibility asymmetry index. The iHRV measures dlmax, dlmean, pL and sgridAND correlated with left ventricular end-diastolic pressure across both groups (average R2  = 0.38 ± 0.03). This is the first evidence that iHRV originates in fetal life and that chronic fetal hypoxia significantly alters it. Isolated fetal hearts from hypoxic pregnancy exhibit a time scale-dependent higher complexity in iFHRV.


Assuntos
Hipóxia Fetal/fisiopatologia , Frequência Cardíaca Fetal , Complicações na Gravidez/fisiopatologia , Animais , Feminino , Coração Fetal/fisiopatologia , Masculino , Gravidez , Ovinos
12.
J Physiol ; 598(19): 4197-4208, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32705691

RESUMO

KEY POINTS: In mammals, pregnancy complications can trigger an embryonic or fetal origin of cardiac dysfunction. However, underlying mechanisms remain uncertain because the partial contributions of the challenge on the mother, placenta or offspring are difficult to disentangle. The avian embryo permits isolation of the direct effects of suboptimal conditions during development on the cardiac function of the offspring, independent of additional effects on the mother and/or the placenta. Therefore, the objectives of this work were to adapt the isolated Langendorff technique using the chicken embryo to study the physiology of the developing heart. Here, we introduce a novel technique and show the utility of the technique for exploring cardioprotective roles of H2 S in the chicken embryo heart. This work lays the foundation for studying the direct effects of H2 S therapy on the embryonic heart independent of effects on the mother and the placenta in adverse development. ABSTRACT: This study adapted the isolated Langendorff preparation to study the chicken embryo heart in response to ischaemia-reperfusion (IR) injury. The utility of the technique was tested by investigating cardioprotective effects of hydrogen sulphide (H2 S) and underlying mechanisms. Embryonic hearts (19 out of 21 days of incubation) mounted on a Langendorff preparation were exposed to IR (30 min ischaemia) after 4 treatments administered randomly, all as a 1 mm bolus, into the perfusate: saline vehicle (control); sodium hydrogen sulphide (NaHS); NaHS plus glibenclamide, an antagonist of KATP opening (NaHS Glib), and Glib alone (Glib). Relative to controls, NaHS treatment improved cardiac function after ischaemia (mean ± SD for area under the curve, AUC, for left ventricular developed pressure, LVDP: 1767.3 ± 929.5 vs. 492.7 ± 308.1; myocardial contractility, dP/dtmax : 2748.9 ± 1514.9 vs. 763.7 ± 433.1) and decreased infarct size (22.7 ± 8.0 vs. 43.9 ± 4.2%) and cardiac damage (% change in creatinine kinase, 49.3 ± 41.3 vs. 214.6 ± 155.1; all P < 0.05). Beneficial effects of NaHS were blocked by Glib. Glib alone had no effects. NaHS increased coronary flow rate (CFR) during baseline (mean ± SD for AUC: 134.3 ± 91.6 vs. 92.2 ± 35.8) and post IR (1467 ± 529.5 vs. 748.0 ± 222.1; both P < 0.05). However, this effect was not prevented by Glib. Therefore, the chicken embryo heart is amenable for study via the Langendorff preparation under basal conditions and during IR. The data show that H2 S confers embryonic cardiac protection via opening of myocardial KATP channels and not via increasing CFR. H2 S may prove a useful therapeutic agent to protect the human fetal heart against IR injury, as may occur in complicated labour.


Assuntos
Sulfeto de Hidrogênio , Traumatismo por Reperfusão , Animais , Embrião de Galinha , Galinhas , Coração , Humanos , Sulfeto de Hidrogênio/farmacologia , Miocárdio
13.
J Physiol ; 595(13): 4329-4350, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28318025

RESUMO

KEY POINTS: Chronic fetal hypoxaemia is a common pregnancy complication associated with intrauterine growth restriction that may influence respiratory outcome at birth. We investigated the effect of maternal chronic hypoxia for a month in late gestation on signalling pathways regulating fetal lung maturation and the transition to air-breathing at birth using isobaric hypoxic chambers without alterations to maternal food intake. Maternal chronic hypoxia in late gestation increases fetal lung expression of genes regulating hypoxia signalling, lung liquid reabsorption and surfactant maturation, which may be an adaptive response in preparation for the successful transition to air-breathing at birth. In contrast to other models of chronic fetal hypoxaemia, late gestation onset fetal hypoxaemia promotes molecular regulation of fetal lung maturation. This suggests a differential effect of timing and duration of fetal chronic hypoxaemia on fetal lung maturation, which supports the heterogeneity observed in respiratory outcomes in newborns following exposure to chronic hypoxaemia in utero. ABSTRACT: Chronic fetal hypoxaemia is a common pregnancy complication that may arise from maternal, placental and/or fetal factors. Respiratory outcome of the infant at birth likely depends on the duration, timing and severity of the hypoxaemic insult. We have isolated the effect of maternal chronic hypoxia (MCH) for a month in late gestation on fetal lung development. Pregnant ewes were exposed to normoxia (21% O2 ) or hypoxia (10% O2 ) from 105 to 138 days of gestation (term ∼145 days). At 138 days, gene expression in fetal lung tissue was determined by quantitative RT-PCR. Cortisol concentrations were determined in fetal plasma and lung tissue. Numerical density of surfactant protein positive cells was determined by immunohistochemistry. MCH reduced maternal PaO2 (106 ± 2.9 vs. 47 ± 2.8 mmHg) and fetal body weight (4.0 ± 0.4 vs. 3.2 ± 0.9 kg). MCH increased fetal lung expression of the anti-oxidant marker CAT and decreased expression of the pro-oxidant marker NOX-4. MCH increased expression of genes regulating hypoxia signalling and feedback (HIF-3α, KDM3A, SLC2A1, EGLN-3). There was no effect of MCH on fetal plasma/lung tissue cortisol concentrations, nor genes regulating glucocorticoid signalling (HSD11B-1, HSD11B-2, NR3C1, NR3C2). MCH increased expression of genes regulating sodium (SCNN1-B, ATP1-A1, ATP1-B1) and water (AQP-4) movement in the fetal lung. MCH promoted surfactant maturation (SFTP-B, SFTP-D, ABCA3) at the molecular level, but did not alter the numerical density of surfactant positive cells in lung tissue. MCH in late gestation promotes molecular maturation of the fetal lung, which may be an adaptive response in preparation for the successful transition to air-breathing at birth.


Assuntos
Hipóxia Fetal/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Pulmão/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/genética , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Pulmão/embriologia , Pulmão/fisiologia , Masculino , Gravidez , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Ovinos
14.
J Pineal Res ; 60(1): 16-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26444711

RESUMO

There is a search for rescue therapy against fetal origins of cardiovascular disease in pregnancy complicated by chronic fetal hypoxia, particularly following clinical diagnosis of fetal growth restriction (FGR). Melatonin protects the placenta in adverse pregnancy; however, whether melatonin protects the fetal heart and vasculature in hypoxic pregnancy independent of effects on the placenta is unknown. Whether melatonin can rescue fetal cardiovascular dysfunction when treatment commences following FGR diagnosis is also unknown. We isolated the effects of melatonin on the developing cardiovascular system of the chick embryo during hypoxic incubation. We tested the hypothesis that melatonin directly protects the fetal cardiovascular system in adverse development and that it can rescue dysfunction following FGR diagnosis. Chick embryos were incubated under normoxia or hypoxia (14% O2) from day 1 ± melatonin treatment (1 mg/kg/day) from day 13 of incubation (term ~21 days). Melatonin in hypoxic chick embryos rescued cardiac systolic dysfunction, impaired cardiac contractility and relaxability, increased cardiac sympathetic dominance, and endothelial dysfunction in peripheral circulations. The mechanisms involved included reduced oxidative stress, enhanced antioxidant capacity and restored vascular endothelial growth factor expression, and NO bioavailability. Melatonin treatment of the chick embryo starting at day 13 of incubation, equivalent to ca. 25 wk of gestation in human pregnancy, rescues early origins of cardiovascular dysfunction during hypoxic development. Melatonin may be a suitable antioxidant candidate for translation to human therapy to protect the fetal cardiovascular system in adverse pregnancy.


Assuntos
Melatonina/farmacologia , Contração Miocárdica/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/embriologia , Animais , Embrião de Galinha , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/fisiopatologia , Humanos , Isquemia Miocárdica/fisiopatologia , Gravidez
15.
J Pineal Res ; 59(1): 80-90, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25908097

RESUMO

Experimental studies in animal models supporting protective effects on the fetus of melatonin in adverse pregnancy have prompted clinical trials in human pregnancy complicated by fetal growth restriction. However, the effects of melatonin on the fetal defense to acute hypoxia, such as that which may occur during labor, remain unknown. This translational study tested the hypothesis, in vivo, that melatonin modulates the fetal cardiometabolic defense responses to acute hypoxia in chronically instrumented late gestation fetal sheep via alterations in fetal nitric oxide (NO) bioavailability. Under anesthesia, 6 fetal sheep at 0.85 gestation were instrumented with vascular catheters and a Transonic flow probe around a femoral artery. Five days later, fetuses were exposed to acute hypoxia with or without melatonin treatment. Fetal blood was taken to determine blood gas and metabolic status and plasma catecholamine concentrations. Hypoxia during melatonin treatment was repeated during in vivo NO blockade with the NO clamp. This technique permits blockade of de novo synthesis of NO while compensating for the tonic production of the gas, thereby maintaining basal cardiovascular function. Melatonin suppressed the redistribution of blood flow away from peripheral circulations and the glycemic and plasma catecholamine responses to acute hypoxia. These are important components of the fetal brain sparing response to acute hypoxia. The effects of melatonin involved NO-dependent mechanisms as the responses were reverted by fetal treatment with the NO clamp. Melatonin modulates the in vivo fetal cardiometabolic responses to acute hypoxia by increasing NO bioavailability.


Assuntos
Hipóxia/tratamento farmacológico , Melatonina/uso terapêutico , Animais , Catecolaminas/metabolismo , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ovinos
16.
J Physiol ; 592(3): 475-89, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24247986

RESUMO

Hypoxia is a common challenge to the fetus, promoting a physiological defence to redistribute blood flow towards the brain and away from peripheral circulations. During acute hypoxia, reactive oxygen species (ROS) interact with nitric oxide (NO) to provide an oxidant tone. This contributes to the mechanisms redistributing the fetal cardiac output, although the source of ROS is unknown. Here, we investigated whether ROS derived from xanthine oxidase (XO) contribute to the fetal peripheral vasoconstrictor response to hypoxia via interaction with NO-dependent mechanisms. Pregnant ewes and their fetuses were surgically prepared for long-term recording at 118 days of gestation (term approximately 145 days). After 5 days of recovery, mothers were infused i.v. for 30 min with either vehicle (n = 11), low dose (30 mg kg(-1), n = 5) or high dose (150 mg kg(-1), n = 9) allopurinol, or high dose allopurinol with fetal NO blockade (n = 6). Following allopurinol treatment, fetal hypoxia was induced by reducing maternal inspired O2 such that fetal basal P aO 2 decreased approximately by 50% for 30 min. Allopurinol inhibited the increase in fetal plasma uric acid and suppressed the fetal femoral vasoconstrictor, glycaemic and lactate acidaemic responses during hypoxia (all P < 0.05), effects that were restored to control levels with fetal NO blockade. The data provide evidence for the activation of fetal XO in vivo during hypoxia and for XO-derived ROS in contributing to the fetal peripheral vasoconstriction, part of the fetal defence to hypoxia. The data are of significance to the understanding of the physiological control of the fetal cardiovascular system during hypoxic stress. The findings are also of clinical relevance in the context of obstetric trials in which allopurinol is being administered to pregnant women when the fetus shows signs of hypoxic distress.


Assuntos
Pressão Sanguínea , Coração Fetal/fisiopatologia , Hipóxia Fetal/fisiopatologia , Frequência Cardíaca , Xantina Oxidase/sangue , Alopurinol/farmacologia , Animais , Glicemia/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Hipóxia Fetal/sangue , Idade Gestacional , Ácido Láctico/sangue , Óxido Nítrico/sangue , Oxigênio/sangue , Consumo de Oxigênio , Gravidez , Espécies Reativas de Oxigênio/sangue , Fluxo Sanguíneo Regional , Ovinos , Ácido Úrico/sangue , Vasoconstrição , Xantina Oxidase/antagonistas & inibidores
17.
Am J Pathol ; 182(4): 1448-58, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410520

RESUMO

Increased vascular impedance in the fetoplacental circulation is associated with fetal hypoxia and growth restriction. We sought to investigate the role of hydrogen sulfide (H2S) in regulating vasomotor tone in the fetoplacental vasculature. H2S is produced endogenously by catalytic activity of cystathionine ß-synthase and cystathionine γ-lyase (CSE). Immunohistochemical analysis localized CSE to smooth muscle cells encircling arteries in stem villi. Immunoreactivity was reduced in placentas from pregnancies with severe early-onset growth-restriction and preeclampsia displaying abnormal umbilical artery Doppler waveforms compared with preeclamptic placentas with normal waveforms and controls. These findings were confirmed at the protein and mRNA levels. MicroRNA-21, which negatively regulates CSE expression, was increased in placentas with abnormal Doppler waveforms. Exposure of villus explants to hypoxia-reoxygenation significantly reduced CSE protein and mRNA and increased microRNA-21 expression. No changes were observed in cystathionine ß-synthase expression, immunolocalized principally to the trophoblast, in pathologic placentas or in vitro. Finally, perfusion of normal placentas with an H2S donor, after preconstriction with a thromboxane mimetic, resulted in dose-dependent vasorelaxation. Glibenclamide and N(G)-nitro-l-arginine methyl ester partially blocked the effect, indicating that H2S acts through ATP-sensitive K(+) channels and nitric oxide synthesis. These results demonstrate that H2S is a powerful vasodilator of the placental vasculature and that expression of CSE is reduced in placentas associated with increased vascular resistance.


Assuntos
Cistationina gama-Liase/metabolismo , Retardo do Crescimento Fetal/enzimologia , Retardo do Crescimento Fetal/genética , Sulfeto de Hidrogênio/farmacologia , MicroRNAs/genética , Placenta/patologia , Resistência Vascular/efeitos dos fármacos , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Feminino , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipóxia/genética , Hipóxia/patologia , Técnicas In Vitro , MicroRNAs/metabolismo , Perfusão , Placenta/efeitos dos fármacos , Placenta/enzimologia , Placenta/fisiopatologia , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resistência Vascular/genética , Vasodilatadores/farmacologia
18.
Adv Exp Med Biol ; 814: 77-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25015802

RESUMO

The quality of the intrauterine environment interacts with our genetic makeup to shape the risk of developing disease in later life. Fetal chronic hypoxia is a common complication of pregnancy. This chapter reviews how fetal chronic hypoxia programmes cardiac and endothelial dysfunction in the offspring in adult life and discusses the mechanisms via which this may occur. Using an integrative approach in large and small animal models at the in vivo, isolated organ, cellular and molecular levels, our programmes of work have raised the hypothesis that oxidative stress in the fetal heart and vasculature underlies the mechanism via which prenatal hypoxia programmes cardiovascular dysfunction in later life. Developmental hypoxia independent of changes in maternal nutrition promotes fetal growth restriction and induces changes in the cardiovascular, metabolic and endocrine systems of the adult offspring, which are normally associated with disease states during ageing. Treatment with antioxidants of animal pregnancies complicated with reduced oxygen delivery to the fetus prevents the alterations in fetal growth, and the cardiovascular, metabolic and endocrine dysfunction in the fetal and adult offspring. The work reviewed offers both insight into mechanisms and possible therapeutic targets for clinical intervention against the early origin of cardiometabolic disease in pregnancy complicated by fetal chronic hypoxia.


Assuntos
Hipóxia Fetal/complicações , Cardiopatias/etiologia , Estresse Oxidativo/fisiologia , Efeitos Tardios da Exposição Pré-Natal/etiologia , Feminino , Hipóxia Fetal/metabolismo , Hipóxia Fetal/fisiopatologia , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
19.
Mol Metab ; 80: 101875, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218535

RESUMO

OBJECTIVE: We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS: Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS: miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS: These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , MicroRNAs , Obesidade Materna , Traumatismo por Reperfusão , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Doenças Cardiovasculares/metabolismo , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade Materna/metabolismo , Traumatismo por Reperfusão/metabolismo
20.
J Physiol ; 591(20): 5083-93, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23940378

RESUMO

Glucocorticoids are widely used to treat chronic lung disease in premature infants but their longer-term adverse effects on the cardiovascular system raise concerns. We reported that neonatal dexamethasone treatment in rats induced in the short term molecular indices of cardiac oxidative stress and cardiovascular tissue remodelling at weaning, and that neonatal combined antioxidant and dexamethasone treatment was protective at this time. In this study, we investigated whether such effects of neonatal dexamethasone have adverse consequences for NO bioavailability and cardiovascular function at adulthood, and whether neonatal combined antioxidant and dexamethasone treatment is protective in the adult. Newborn rat pups received daily i.p. injections of a human-relevant tapering dose of dexamethasone (D; n = 8; 0.5, 0.3, 0.1 µg g(-1)) or D with vitamins C and E (DCE; n = 8; 200 and 100 mg kg(-1), respectively) on postnatal days 1-3 (P1-3); vitamins were continued from P4 to P6. Controls received equal volumes of vehicle from P1 to P6 (C; n = 8). A fourth group received vitamins alone (CCE; n = 8). At P100, plasma NO metabolites (NOx) was measured and isolated hearts were assessed under both Working and Langendorff preparations. Relative to controls, neonatal dexamethasone therapy increased mortality by 18% (P < 0.05). Surviving D pups at adulthood had lower plasma NOx concentrations (10.6 ± 0.8 vs. 28.0 ± 1.5 µM), an increased relative left ventricular (LV) mass (70 ± 2 vs. 63 ± 1%), enhanced LV end-diastolic pressure (14 ± 2 vs. 8 ± 1 mmHg) and these hearts failed to adapt output with increased preload (cardiac output: 2.9 ± 2.0 vs. 10.6 ± 1.2 ml min(-1)) or afterload (cardiac output: -5.3 ± 2.0 vs.1.4 ± 1.2 ml min(-1)); all P < 0.05. Combined neonatal dexamethasone with antioxidant vitamins improved postnatal survival, restored plasma NOx and protected against cardiac dysfunction at adulthood. In conclusion, neonatal dexamethasone therapy promotes cardiac dysfunction at adulthood. Combined neonatal treatment with antioxidant vitamins is an effective intervention.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Dexametasona/efeitos adversos , Vitamina E/uso terapêutico , Vitaminas/uso terapêutico , Fatores Etários , Animais , Animais Recém-Nascidos , Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Débito Cardíaco , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Frequência Cardíaca , Masculino , Óxido Nítrico/sangue , Estresse Oxidativo , Ratos , Ratos Wistar , Remodelação Ventricular , Vitamina E/administração & dosagem , Vitaminas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA